Geomechanical appraisal and prospectivity analysis of the Goldwyer shale accounting for stress variation and formation anisotropy

Partha Pratim Mandal*, Joel Sarout, Reza Rezaee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Profitable exploitation of unconventional shale gas reservoirs relies on the success of hydraulic fracturing stimulation. This is more likely in brittle rock formations because natural and hydraulic fractures remain open after stimulation, allowing for more hydrocarbon production. Identification of the most favourable depth intervals relies on the robust analysis of available well-logs, and on laboratory-derived mechanical and elastic data obtained under controlled stresses replicating the actual conditions at depth. Beyond their use for predictive geomechanical modelling such laboratory data can act as calibration points for existing well-logs. Well-logs can also be used to guide the selection of the rock samples to be characterised and tested in the laboratory, ensuring that they are representative of the rock formation. Here we apply the above principles and demonstrate how this improves the geomechanical appraisal of the Goldwyer formation and assesses its prospectivity. This workflow integrates Rock-eval geochemical analyses, elastic properties, anisotropy, in-situ stress state and pore pressure, mechanical brittleness and fracturing indices derived from petrophysical and sonic logs in the Theia-1 and Pictor East-1 wells. We estimated an average total organic carbon of 2 w. t.% (maximum 5 w. t.%), a moderate to high dynamic Young's modulus (14–52 GPa), a low Poisson's ratio (0.24–0.27), and an average elasticity-based brittleness index B1 of 41% in the deeper G-III unit. This unit also exhibits a low differential horizontal stress ratio and a high fracture index. Such attributes suggest a good prospectivity of the G-III unit, not only in terms of potential resources but as importantly in terms of fracability.

Original languageEnglish
Article number104513
JournalInternational Journal of Rock Mechanics and Mining Sciences
Volume135
DOIs
Publication statusPublished - Nov 2020
Externally publishedYes

Keywords

  • Anisotropy
  • Brittleness
  • Hydraulic fracturing
  • In-situ stress
  • Pore pressure
  • Prospectivity

Fingerprint

Dive into the research topics of 'Geomechanical appraisal and prospectivity analysis of the Goldwyer shale accounting for stress variation and formation anisotropy'. Together they form a unique fingerprint.

Cite this