TY - JOUR
T1 - Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression
AU - Band, Shahab S.
AU - Heggy, Essam
AU - Bateni, Sayed M.
AU - Karami, Hojat
AU - Rabiee, Mobina
AU - Samadianfard, Saeed
AU - Chau, Kwok Wing
AU - Mosavi, Amir
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2021
Y1 - 2021
N2 - Utilizing new approaches to accurately predict groundwater level (GWL) in arid regions is of vital importance. In this study, support vector regression (SVR), Gaussian process regression (GPR), and their combination with wavelet transformation (named wavelet-support vector regression (W-SVR) and wavelet-Gaussian process regression (W-GPR)) are used to forecast groundwater level in Semnan plain (arid area) for the next month. Three different wavelet transformations, namely Haar, db4, and Symlet, are tested. Four statistical metrics, namely root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2), and Nah-Sutcliffe efficiency (NS), are used to evaluate performance of different methods. The results reveal that SVR with RMSE of 0.04790 (m), MAPE of 0.00199%, R 2 of 0.99995, and NS of 0.99988 significantly outperforms GPR with RMSE of 0.55439 (m), MAPE of 0.04363%, R2 of 0.99264, and NS of 0.98413. Besides, the hybrid W-GPR-1 model (i.e. GPR with Harr wavelet) remarkably improves the accuracy of GWL prediction compared to GPR. Finally, the hybrid W-SVR-3 model (i.e. SVR with Symlet) provides the best GWL prediction with RMSE, MAPE, R2, and NS of 0.01290 (m), 0.00079%, 0.99999, and 0.99999, respectively. Overall, the findings indicate that hybrid models can accurately predict GWL in arid regions.
AB - Utilizing new approaches to accurately predict groundwater level (GWL) in arid regions is of vital importance. In this study, support vector regression (SVR), Gaussian process regression (GPR), and their combination with wavelet transformation (named wavelet-support vector regression (W-SVR) and wavelet-Gaussian process regression (W-GPR)) are used to forecast groundwater level in Semnan plain (arid area) for the next month. Three different wavelet transformations, namely Haar, db4, and Symlet, are tested. Four statistical metrics, namely root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2), and Nah-Sutcliffe efficiency (NS), are used to evaluate performance of different methods. The results reveal that SVR with RMSE of 0.04790 (m), MAPE of 0.00199%, R 2 of 0.99995, and NS of 0.99988 significantly outperforms GPR with RMSE of 0.55439 (m), MAPE of 0.04363%, R2 of 0.99264, and NS of 0.98413. Besides, the hybrid W-GPR-1 model (i.e. GPR with Harr wavelet) remarkably improves the accuracy of GWL prediction compared to GPR. Finally, the hybrid W-SVR-3 model (i.e. SVR with Symlet) provides the best GWL prediction with RMSE, MAPE, R2, and NS of 0.01290 (m), 0.00079%, 0.99999, and 0.99999, respectively. Overall, the findings indicate that hybrid models can accurately predict GWL in arid regions.
KW - Gaussian process regression
KW - Groundwater level prediction
KW - artificial intelligence
KW - hydrological model
KW - machine learning
KW - support vector
UR - http://www.scopus.com/inward/record.url?scp=85110346643&partnerID=8YFLogxK
U2 - 10.1080/19942060.2021.1944913
DO - 10.1080/19942060.2021.1944913
M3 - Article
AN - SCOPUS:85110346643
SN - 1994-2060
VL - 15
SP - 1147
EP - 1158
JO - Engineering Applications of Computational Fluid Mechanics
JF - Engineering Applications of Computational Fluid Mechanics
IS - 1
ER -