Projects per year
Abstract
This article considers the problem of cost-aware downlink sum-rate maximization via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation heterogeneous wireless networks (HetNets). We consider a future HetNet comprised of multi-RATs and serving multi-connectivity edge devices (EDs), and we formulate the problem as a mixed-integer non-linear programming (MINP) problem. Due to the high complexity and combinatorial nature of this problem and the difficulty to solve it using conventional methods, we propose a hierarchical multi-agent deep reinforcement learning (DRL)-based framework, called DeepRAT, to solve it efficiently and learn system dynamics. In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network (DQN) algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient (DDPG) algorithm. Using simulations, we demonstrate how the various DRL agents efficiently interact to learn system dynamics and derive the global optimal policy. Furthermore, our simulation results show that the proposed DeepRAT algorithm outperforms existing state-of-the-art heuristic approaches in terms of network utility. Finally, we quantitatively show the ability of the DeepRAT model to quickly and dynamically adapt to abrupt changes in network dynamics, such as EDs' mobility.
Original language | English |
---|---|
Pages (from-to) | 2481-2494 |
Number of pages | 14 |
Journal | IEEE Transactions on Network Science and Engineering |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Deep reinforcement learning
- deep Q network
- deep deterministic policy gradient
- heterogeneous networks
- multi-RAT assignment
- power allocation
- resource allocation
Fingerprint
Dive into the research topics of 'Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT Assignment and Dynamic Resource Allocation in Next-Generation HetNets'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EX-QNRF-NPRPS-37: Secure Federated Edge Intelligence Framework for AI-driven 6G Applications
Abdallah, M. M. (Lead Principal Investigator), Al Fuqaha, A. (Principal Investigator), Hamood, M. (Graduate Student), Aboueleneen, N. (Graduate Student), Student-1, G. (Graduate Student), Student-2, G. (Graduate Student), Fellow-1, P. D. (Post Doctoral Fellow), Assistant-1, R. (Research Assistant), Mohamed, D. A. (Principal Investigator), Mahmoud, D. M. (Principal Investigator), Al-Dhahir, P. N. (Principal Investigator) & Khattab, P. T. (Principal Investigator)
19/04/21 → 30/08/24
Project: Applied Research