TY - JOUR
T1 - Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep Learning Model
AU - Syed, Dabeeruddin
AU - Abu-Rub, Haitham
AU - Ghrayeb, Ali
AU - Refaat, Shady S.
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2021
Y1 - 2021
N2 - Forecasting of energy consumption in Smart Buildings (SB) and using the extracted information to plan and operate power generation are crucial elements of the Smart Grid (SG) energy management. Prediction of electrical loads and scheduling the generation resources to match the demand enable the utility to mitigate the energy generation cost. Different methodologies have been employed to predict energy consumption at different levels of distribution and transmission systems. In this paper, a novel hybrid deep learning model is proposed to predict energy consumption in smart buildings. The proposed framework consists of two stages, namely, data cleaning, and model building. The data cleaning phase applies pre-processing techniques to the raw data and adds additional features of lag values. In the model-building phase, the hybrid model is trained on the processed data. The hybrid deep learning (DL) model is based on the stacking of fully connected layers, and unidirectional Long Short Term Memory (LSTMs) on bi-directional LSTMs. The proposed model is designed to capture the temporal dependencies of energy consumption on dependent features and to be effective in terms of computational complexity, training time, and forecasting accuracy. The proposed model is evaluated on two benchmark energy consumption datasets yielding superior performance in terms of accuracy when compared with widely used hybrid models such as Convolutional (Conv) Neural Network-LSTM, ConvLSTM, LSTM encoder-decoder model, stacking models, etc. A mean absolute percentage error (MAPE) of 2.00% for case study 1 and a MAPE of 3.71% for case study 2 is obtained for the proposed forecasting DL model in comparison with LSTM-based models that yielded 7.80% MAPE and 5.099% MAPE for two datasets respectively. The proposed model has also been applied for multi-step week-ahead daily forecasting with an improvement of 8.368% and 20.99% in MAPE against the LSTM-based model for the utilized energy consumption datasets respectively.
AB - Forecasting of energy consumption in Smart Buildings (SB) and using the extracted information to plan and operate power generation are crucial elements of the Smart Grid (SG) energy management. Prediction of electrical loads and scheduling the generation resources to match the demand enable the utility to mitigate the energy generation cost. Different methodologies have been employed to predict energy consumption at different levels of distribution and transmission systems. In this paper, a novel hybrid deep learning model is proposed to predict energy consumption in smart buildings. The proposed framework consists of two stages, namely, data cleaning, and model building. The data cleaning phase applies pre-processing techniques to the raw data and adds additional features of lag values. In the model-building phase, the hybrid model is trained on the processed data. The hybrid deep learning (DL) model is based on the stacking of fully connected layers, and unidirectional Long Short Term Memory (LSTMs) on bi-directional LSTMs. The proposed model is designed to capture the temporal dependencies of energy consumption on dependent features and to be effective in terms of computational complexity, training time, and forecasting accuracy. The proposed model is evaluated on two benchmark energy consumption datasets yielding superior performance in terms of accuracy when compared with widely used hybrid models such as Convolutional (Conv) Neural Network-LSTM, ConvLSTM, LSTM encoder-decoder model, stacking models, etc. A mean absolute percentage error (MAPE) of 2.00% for case study 1 and a MAPE of 3.71% for case study 2 is obtained for the proposed forecasting DL model in comparison with LSTM-based models that yielded 7.80% MAPE and 5.099% MAPE for two datasets respectively. The proposed model has also been applied for multi-step week-ahead daily forecasting with an improvement of 8.368% and 20.99% in MAPE against the LSTM-based model for the utilized energy consumption datasets respectively.
KW - Appliances energy forecasting
KW - bidirectional LSTM
KW - deep learning
KW - hybrid model
KW - power forecasting
UR - http://www.scopus.com/inward/record.url?scp=85101739999&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2021.3061370
DO - 10.1109/ACCESS.2021.3061370
M3 - Article
AN - SCOPUS:85101739999
SN - 2169-3536
VL - 9
SP - 33498
EP - 33511
JO - IEEE Access
JF - IEEE Access
M1 - 9360813
ER -