TY - GEN
T1 - How transfer learning impacts linguistic knowledge in deep NLP models?
AU - Durrani, Nadir
AU - Sajjad, Hassan
AU - Dalvi, Fahim
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics
PY - 2021
Y1 - 2021
N2 - Transfer learning from pre-trained neural language models towards downstream tasks has been a predominant theme in NLP recently. Several researchers have shown that deep NLP models learn non-trivial amount of linguistic knowledge, captured at different layers of the model. We investigate how fine-tuning towards downstream NLP tasks impacts the learned linguistic knowledge. We carry out a study across popular pre-trained models BERT, RoBERTa and XLNet using layer and neuron-level diagnostic classifiers. We found that for some GLUE tasks, the network relies on the core linguistic information and preserve it deeper in the network, while for others it forgets. Linguistic information is distributed in the pre-trained language models but becomes localized to the lower layers post-fine-tuning, reserving higher layers for the task specific knowledge. The pattern varies across architectures, with BERT retaining linguistic information relatively deeper in the network compared to RoBERTa and XLNet, where it is predominantly delegated to the lower layers.
AB - Transfer learning from pre-trained neural language models towards downstream tasks has been a predominant theme in NLP recently. Several researchers have shown that deep NLP models learn non-trivial amount of linguistic knowledge, captured at different layers of the model. We investigate how fine-tuning towards downstream NLP tasks impacts the learned linguistic knowledge. We carry out a study across popular pre-trained models BERT, RoBERTa and XLNet using layer and neuron-level diagnostic classifiers. We found that for some GLUE tasks, the network relies on the core linguistic information and preserve it deeper in the network, while for others it forgets. Linguistic information is distributed in the pre-trained language models but becomes localized to the lower layers post-fine-tuning, reserving higher layers for the task specific knowledge. The pattern varies across architectures, with BERT retaining linguistic information relatively deeper in the network compared to RoBERTa and XLNet, where it is predominantly delegated to the lower layers.
UR - http://www.scopus.com/inward/record.url?scp=85108594453&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85108594453
T3 - Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
SP - 4947
EP - 4957
BT - Findings of the Association for Computational Linguistics
A2 - Zong, Chengqing
A2 - Xia, Fei
A2 - Li, Wenjie
A2 - Navigli, Roberto
PB - Association for Computational Linguistics (ACL)
T2 - Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Y2 - 1 August 2021 through 6 August 2021
ER -