Human interaction recognition using low-rank matrix approximation and super descriptor tensor decomposition

Muhammad Rizwan Khokher*, Abdesselam Bouzerdoum, Son Lam Phung

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Audio-visual recognition systems rely on efficient feature extraction. Many spatio-temporal interest point detectors for visual feature extraction are either too sparse, leading to loss of information, or too dense resulting in noisy and redundant information. Furthermore, interest point detectors designed for a controlled environment can be affected by camera motion. In this paper, a salient spatio-temporal interest point detector is proposed based on a low-rank and group-sparse matrix approximation. The detector handles the camera motion through a short-window video stabilization. The multimodal audio-visual features from multiple descriptors are represented by a super descriptor, from which a compact set of features is extracted through a tensor decomposition and feature selection. This tensor decomposition retains the spatiotemporal structure among features obtained from multiple descriptors. Experimental validation is conducted using two benchmark human interaction recognition datasets: TVHID and Parliament. Experimental results are presented which show that the proposed approach outperforms many state-ofthe- art methods, achieving classification rates of 74.7% and 88.5% on the TVHID and Parliament datasets, respectively.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1847-1851
Number of pages5
ISBN (Electronic)9781509041176
DOIs
Publication statusPublished - 16 Jun 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Keywords

  • Human interaction recognition
  • low-rank and group-sparse matrix approximation
  • spatiotemporal interest point detection
  • tensor decomposition

Fingerprint

Dive into the research topics of 'Human interaction recognition using low-rank matrix approximation and super descriptor tensor decomposition'. Together they form a unique fingerprint.

Cite this