Hybrid PLS-ML Authentication Scheme for V2I Communication Networks

Hala Amin, Jawaher Kaldari, Nora Mohamed, Waqas Aman, Saif Al-Kuwari

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Vehicular communication networks are rapidly emerging as vehicles become smarter. However, these networks are increasingly susceptible to various attacks. The situation is exacerbated by the rise in automated vehicles complicates, emphasizing the need for security and authentication measures to ensure safe and effective traffic management. In this paper, we propose a novel hybrid physical layer security (PLS)-machine learning (ML) authentication scheme by exploiting the position of the transmitter vehicle as a device fingerprint. We use a time-of-arrival (ToA) based localization mechanism where the ToA is estimated at roadside units (RSUs), and the coordinates of the transmitter vehicle are extracted at the base station (BS). Furthermore, to track the mobility of the moving legitimate vehicle, we use ML model trained on several system parameters. We try two ML models for this purpose, i.e., support vector regression and decision tree. To evaluate our scheme, we conduct binary hypothesis testing on the estimated positions with the help of the ground truths provided by the ML model, which classifies the transmitter node as legitimate or malicious. Moreover, we consider the probability of false alarm and the probability of missed detection as performance metrics resulting from the binary hypothesis testing, and mean absolute error (MAE), mean square error (MSE), and coefficient of determination R2 to further evaluate the ML models. We also compare our scheme with a baseline scheme that exploits angle of arrival at RSUs for authentication. We observe that our proposed position-based mechanism outperforms the baseline scheme significantly in terms of missed detections.

Original languageEnglish
Title of host publication2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350335590
DOIs
Publication statusPublished - 2023
Event2023 International Symposium on Networks, Computers and Communications, ISNCC 2023 - Doha, Qatar
Duration: 23 Oct 202326 Oct 2023

Publication series

Name2023 International Symposium on Networks, Computers and Communications, ISNCC 2023

Conference

Conference2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
Country/TerritoryQatar
CityDoha
Period23/10/2326/10/23

Fingerprint

Dive into the research topics of 'Hybrid PLS-ML Authentication Scheme for V2I Communication Networks'. Together they form a unique fingerprint.

Cite this