Projects per year
Abstract
We report on the optical and morphological properties of silica thin layers deposited by reactive RF magnetron sputtering of a SiO2 target under different oxygen to total flow ratios [r(O2) = O2/Ar, ranging from 0 to 25%]. The refractive index (n), extinction coefficient, total transmission, and total reflectance were systematically investigated, while field-emission scanning electron microscopy, atomic force microscopy, and three-dimensional (3D) average roughness data construction measurements were carried out to probe the surface morphology. Contact angle measurements were performed to assess the hydrophilicity of our coatings as a function of the oxygen content. We performed a thorough numerical analysis using 1D-solar cell capacitance simulator (SCAPS-1D) based on the measured experimental optical properties to simulate the photovoltaic (PV) device performance, where a clear improvement in the photoconversion efficiency from 25 to 26.5% was clearly observed with respect to r(O2). Finally, a computational analysis using OptiLayer confirmed a minimum total reflectance of less than 0.4% by coupling a silica layer with n = 1.415 with another high-refractive-index (i.e., >2) oxide layer. These promising results pave the way for optimization of silica thin films as efficient antireflection and self-cleaning coatings to display better PV performance in a variety of locations including a desert environment.
Original language | English |
---|---|
Pages (from-to) | 5276-5286 |
Number of pages | 11 |
Journal | ACS Omega |
Volume | 6 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2 Mar 2021 |
Fingerprint
Dive into the research topics of 'Hydrophilic Antireflection and Antidust Silica Coatings'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EX-QNRF-NPRPS-36: Light Management in Solar Cells using Fault-Tolerant Plasmonics and Metamaterials [MetaSol]
El-Mellouhi, F. (Principal Investigator), Aissa, B. (Lead Principal Investigator), Mirza, M. (Graduate Student), Pereira, D. R. N. (Principal Investigator) & Thiehmed, Z. (Research Assistant)
12/05/19 → 12/08/23
Project: Applied Research