Hysteresis Current Control of Buck-Boost Non-Isolated Onboard Charger for Electric Vehicles

Hasan Komurcugil, Naki Guler, Sertac Bayhan, Ozan Gulbudak

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper proposes a hysteresis current control (HCC) method for a single-inductor buck-boost non-isolated onboard charger for electric vehicles. The charger is capable of working both in the boost and buck modes. The proposed HCC relies on the buck-boost inductor current and its reference which is generated using a proportional-resonant (PR) controller using grid current error. The reference current generated by PR controller is modified to suppress the oscillations in the inductor currents. An active damping by using a virtual resistor connected in series to filter inductor is used which does not require an additional sensor. A proportional-integral (PI) controller is used to generate the amplitude of grid current reference, which is utilized in constant current (CC) and constant voltage (CV) modes. The effectiveness of the proposed control strategy as well as the control method, is investigated by simulation studies by considering two different battery voltage levels (48V and 350V). The results show that the proposed method is able to charge the battery in CV and CC modes. Moreover, the grid current is maintained in unity power factor at a reasonably low total harmonic distortion (THD) which is smaller than the limits recognized by international standards.

Original languageEnglish
Title of host publicationIECON 2023 - 49th Annual Conference of the IEEE Industrial Electronics Society
PublisherIEEE Computer Society
ISBN (Electronic)9798350331820
DOIs
Publication statusPublished - 2023
Event49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023 - Singapore, Singapore
Duration: 16 Oct 202319 Oct 2023

Publication series

NameIECON Proceedings (Industrial Electronics Conference)
ISSN (Print)2162-4704
ISSN (Electronic)2577-1647

Conference

Conference49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023
Country/TerritorySingapore
CitySingapore
Period16/10/2319/10/23

Keywords

  • Onboard battery charger
  • constant current mode
  • constant voltage mode
  • hysteresis current control

Fingerprint

Dive into the research topics of 'Hysteresis Current Control of Buck-Boost Non-Isolated Onboard Charger for Electric Vehicles'. Together they form a unique fingerprint.

Cite this