Image4Act: Online social media image processing for disaster response

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

101 Citations (Scopus)

Abstract

We present an end-to-end social media image processing system called Image4Act. The system aims at collecting, denoising, and classifying imagery content posted on social media platforms to help humanitarian organizations in gaining situational awareness and launching relief operations. It combines human computation and machine learning techniques to process high-volume social media imagery content in real time during natural and human-made disasters. To cope with the noisy nature of the social media imagery data, we use a deep neural network and perceptual hashing techniques to filter out irrelevant and duplicate images. Furthermore, we present a specific use case to assess the severity of infrastructure damage incurred by a disaster. The evaluations of the system on existing disaster datasets as well as a real-world deployment during a recent cyclone prove the effectiveness of the system.

Original languageEnglish
Title of host publicationProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
EditorsJana Diesner, Elena Ferrari, Guandong Xu
PublisherAssociation for Computing Machinery, Inc
Pages601-604
Number of pages4
ISBN (Electronic)9781450349932
DOIs
Publication statusPublished - 31 Jul 2017
Event9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017 - Sydney, Australia
Duration: 31 Jul 20173 Aug 2017

Publication series

NameProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017

Conference

Conference9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
Country/TerritoryAustralia
CitySydney
Period31/07/173/08/17

Fingerprint

Dive into the research topics of 'Image4Act: Online social media image processing for disaster response'. Together they form a unique fingerprint.

Cite this