TY - CHAP
T1 - Industrial Modeling and Programming Language (IMPL) for Off- and On-Line Optimization and Estimation Applications
AU - Kelly, Jeffrey D.
AU - Menezes, Brenno C.
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2019.
PY - 2019
Y1 - 2019
N2 - IMPL is both a structure- and semantic-based machine-coded proprietary software language (closed-source) built upon the computer programming language Fortran to model and solve large-scale discrete, nonlinear and dynamic (DND) optimization and estimation problems found in the batch and continuous process industries such as oil and gas, petrochemicals, specialty and bulk chemicals, pulp and paper, energy, agro-industrial, mining and minerals, food and beverage just to name a few. The structures are based on modeling the superstructure (network, routings, flowsheet, etc.) with units, operations, ports and states (UOPSS) and the semantics (extent, magnitude, capacity, concentration, etc.) are based on quantity, logic and quality phenomenological (QLQP) variables for flows, holdups, yields, startups, setups, switchovers, shutdowns, densities, components, properties and conditions. Most community- and commercial-based MILP and NLP solvers are connected to IMPL to solve design, planning, scheduling, operations and process coordinating optimization problems as well as data reconciliation and parameter estimation problems with diagnostics of observability, redundancy and variability. Examples detailed in the chapter include industrial applications of poultry production planning with batch-lines, lubes sequence-dependent grade changeover sequencing and gasoline blend scheduling optimization with a user-directed heuristic to solve MINLP problems as MILP logistics with nominal quality cuts to approximate the nonlinearities from the blending. To summarize, IMPL may be considered as a confluence with the scientific disciplines of applied engineering, management and operations, computer science, information and communication technologies, statistics and now data science where optimization is known as decision science i.e., the science of decision-making.
AB - IMPL is both a structure- and semantic-based machine-coded proprietary software language (closed-source) built upon the computer programming language Fortran to model and solve large-scale discrete, nonlinear and dynamic (DND) optimization and estimation problems found in the batch and continuous process industries such as oil and gas, petrochemicals, specialty and bulk chemicals, pulp and paper, energy, agro-industrial, mining and minerals, food and beverage just to name a few. The structures are based on modeling the superstructure (network, routings, flowsheet, etc.) with units, operations, ports and states (UOPSS) and the semantics (extent, magnitude, capacity, concentration, etc.) are based on quantity, logic and quality phenomenological (QLQP) variables for flows, holdups, yields, startups, setups, switchovers, shutdowns, densities, components, properties and conditions. Most community- and commercial-based MILP and NLP solvers are connected to IMPL to solve design, planning, scheduling, operations and process coordinating optimization problems as well as data reconciliation and parameter estimation problems with diagnostics of observability, redundancy and variability. Examples detailed in the chapter include industrial applications of poultry production planning with batch-lines, lubes sequence-dependent grade changeover sequencing and gasoline blend scheduling optimization with a user-directed heuristic to solve MINLP problems as MILP logistics with nominal quality cuts to approximate the nonlinearities from the blending. To summarize, IMPL may be considered as a confluence with the scientific disciplines of applied engineering, management and operations, computer science, information and communication technologies, statistics and now data science where optimization is known as decision science i.e., the science of decision-making.
KW - Data reconciliation and regression
KW - Flow networks and custom modeling
KW - Mixed-integer linear and nonlinear programming
KW - Planning, scheduling and coordinating
UR - http://www.scopus.com/inward/record.url?scp=85075890207&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-28565-4_13
DO - 10.1007/978-3-030-28565-4_13
M3 - Chapter
AN - SCOPUS:85075890207
T3 - Springer Optimization and Its Applications
SP - 75
EP - 96
BT - Springer Optimization and Its Applications
PB - Springer
ER -