TY - GEN
T1 - Internal porosity detection in additively manufactured parts via electromechanical impedance measurements
AU - Tenney, Charles
AU - Albakri, Mohammad I.
AU - Kubalak, Joseph
AU - Sturm, Logan D.
AU - Williams, Christopher B.
AU - Tarazaga, Pablo A.
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The flexibility offered by additive manufacturing (AM) technologies to fabricate complex geometries poses several challenges to non-destructive evaluation (NDE) and quality control (QC) techniques. Existing NDE and QC techniques are not optimized for AM processes, materials, or parts. Such lack of reliable means to verify and qualify AM parts is a significant barrier to further industrial adoption of AM technologies. Electromechanical impedance measurements have been recently introduced as an alternative solution to detect anomalies in AM parts. With this approach, piezoelectric wafers bonded to the part under test are utilized as collocated sensors and actuators. Due to the coupled electromechanical characteristics of piezoelectric materials, the measured electrical impedance of the piezoelectric wafer depends on the mechanical impedance of the part under test, allowing build defects to be detected. This paper investigates the effectiveness of impedance-based NDE approach to detect internal porosity in AM parts. This type of build defects is uniquely challenging as voids are normally embedded within the structure and filled with unhardened model or supporting material. The impact of internal voids on the electromechanical impedance of AM parts is studied at several frequency ranges.
AB - The flexibility offered by additive manufacturing (AM) technologies to fabricate complex geometries poses several challenges to non-destructive evaluation (NDE) and quality control (QC) techniques. Existing NDE and QC techniques are not optimized for AM processes, materials, or parts. Such lack of reliable means to verify and qualify AM parts is a significant barrier to further industrial adoption of AM technologies. Electromechanical impedance measurements have been recently introduced as an alternative solution to detect anomalies in AM parts. With this approach, piezoelectric wafers bonded to the part under test are utilized as collocated sensors and actuators. Due to the coupled electromechanical characteristics of piezoelectric materials, the measured electrical impedance of the piezoelectric wafer depends on the mechanical impedance of the part under test, allowing build defects to be detected. This paper investigates the effectiveness of impedance-based NDE approach to detect internal porosity in AM parts. This type of build defects is uniquely challenging as voids are normally embedded within the structure and filled with unhardened model or supporting material. The impact of internal voids on the electromechanical impedance of AM parts is studied at several frequency ranges.
KW - Additive manufacturing
KW - Electromechanical impedance
KW - Internal porosity
KW - Nondestructive evaluation
UR - http://www.scopus.com/inward/record.url?scp=85035781938&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2017-3856
DO - 10.1115/SMASIS2017-3856
M3 - Conference contribution
AN - SCOPUS:85035781938
T3 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
BT - Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PB - American Society of Mechanical Engineers
T2 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Y2 - 18 September 2017 through 20 September 2017
ER -