TY - GEN
T1 - Investigation of gas-liquid flow using electrical resistance tomography and wavelet analysis techniques for early kick detection
AU - Barooah, Abinash
AU - Khan, Muhammad Saad
AU - Rahman, Mohammad Azizur
AU - Hasan, Abu Rashid
AU - Manikonda, Kaushik
AU - Abdelrazeq, Motasem
AU - Sleiti, Ahmad Khalaf
AU - El-Naas, Muftah
AU - Hascakir, Berna
N1 - Publisher Copyright:
Copyright © 2021 by ASME.
PY - 2021
Y1 - 2021
N2 - Gas kick is a well control problem and is defined as the sudden influx of formation gas into the wellbore. This sudden influx, if not controlled, may lead to a blowout problem. An accidental spark during a blowout can lead to a catastrophic oil or gas fire. This makes early gas kick detection crucial to minimize the possibility of a blowout. The conventional kick detection methods such as the pit gain and flow rate method have very low sensitivity and are time-consuming. Therefore, it is required to identify an alternative kick detection method that could provide real-time readings with higher sensitivity. In this study, Electrical Resistance Tomography (ERT) and dynamic pressure techniques have been used to investigate the impact of various operating parameters on gas volume fraction and pressure fluctuation for early kick detection. The experiments were conducted on a horizontal flow loop of 6.16 mERT with an annular diameter ratio of 1.8 for Newtonian fluid (Water) with varying pipe inclination angle (0 - 10o) and annulus eccentricity (0 – 30%), liquid flow rate (165 – 265 kg/min), and air input pressure (1 – 2 bar). The results showed that ERT is a promising tool for the measurement of in-situ gas volume fraction. It was observed that the liquid flow rate, air input pressure and inclination has a much bigger impact on gas volume fraction whereas eccentricity does not have a significant influence. An increase in the liquid flow rate and eccentricity by 60% and 30% decreased the gas volume fraction by an average of 32.8% and 5.9% respectively, whereas an increase in the inclination by 80 increased the gas volume fraction by an average 42%. Moreover, it was observed that the wavelet analysis of the pressure fluctuations has good efficacy for real-time kick detection. Therefore, this study will help provide a better understanding of the gas-liquid flow and potentially provide an alternative method for early kick detection.
AB - Gas kick is a well control problem and is defined as the sudden influx of formation gas into the wellbore. This sudden influx, if not controlled, may lead to a blowout problem. An accidental spark during a blowout can lead to a catastrophic oil or gas fire. This makes early gas kick detection crucial to minimize the possibility of a blowout. The conventional kick detection methods such as the pit gain and flow rate method have very low sensitivity and are time-consuming. Therefore, it is required to identify an alternative kick detection method that could provide real-time readings with higher sensitivity. In this study, Electrical Resistance Tomography (ERT) and dynamic pressure techniques have been used to investigate the impact of various operating parameters on gas volume fraction and pressure fluctuation for early kick detection. The experiments were conducted on a horizontal flow loop of 6.16 mERT with an annular diameter ratio of 1.8 for Newtonian fluid (Water) with varying pipe inclination angle (0 - 10o) and annulus eccentricity (0 – 30%), liquid flow rate (165 – 265 kg/min), and air input pressure (1 – 2 bar). The results showed that ERT is a promising tool for the measurement of in-situ gas volume fraction. It was observed that the liquid flow rate, air input pressure and inclination has a much bigger impact on gas volume fraction whereas eccentricity does not have a significant influence. An increase in the liquid flow rate and eccentricity by 60% and 30% decreased the gas volume fraction by an average of 32.8% and 5.9% respectively, whereas an increase in the inclination by 80 increased the gas volume fraction by an average 42%. Moreover, it was observed that the wavelet analysis of the pressure fluctuations has good efficacy for real-time kick detection. Therefore, this study will help provide a better understanding of the gas-liquid flow and potentially provide an alternative method for early kick detection.
KW - Dynamic pressure
KW - ERT
KW - Gas kick
KW - Gas-liquid flow
KW - In-situ gas volume fraction
KW - Newtonian flow
KW - Wavelet analysis
UR - http://www.scopus.com/inward/record.url?scp=85117100906&partnerID=8YFLogxK
U2 - 10.1115/OMAE2021-63725
DO - 10.1115/OMAE2021-63725
M3 - Conference contribution
AN - SCOPUS:85117100906
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Petroleum Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2021
Y2 - 21 June 2021 through 30 June 2021
ER -