TY - GEN
T1 - Local cooling control of data centers with adaptive vent tiles
AU - Beitelmal, Monem H.
AU - Wang, Zhikui
AU - Felix, Carlos
AU - Bash, Cullen
AU - Hoover, Christopher
AU - McReynolds, Alan
PY - 2010
Y1 - 2010
N2 - Local airflow distribution in data center environments has historically been accomplished through ventilation tiles distributed over a raised floor air distribution plenum. The tiles are initially configured upon the commissioning of the facility and, as IT equipment configuration changes with time, the tiles are adjusted accordingly. However, tile adjustment is a manual process that is error-prone and often non-intuitive. Tile flow rates are a strong function of under floor plenum pressure distribution which is subject to change as tile layouts are reconfigured. Thermal models are often developed to assist with layout changes, but these models can be time-consuming to generate and require skilled users to achieve accurate results. This paper presents an adaptive vent tile (AVT) for use in raised floor data centers that can adapt to the needs of nearby IT equipment. We present a multi-input-multi-output (MIMO) AVT controller that automatically and dynamically adjusts a multiplicity of AVT openings in coordination such that thermal management requirements are met with minimum use of airflow. We describe the development of dynamic models and algorithm design of the MIMO controller. The controller was evaluated with a set of AVT units in a production data center environment. Results show that the controller can optimize local airflow distribution, provide fine-grained rack intake temperature control and respond to disturbances in a manner that is not achievable through static distribution of tiles.
AB - Local airflow distribution in data center environments has historically been accomplished through ventilation tiles distributed over a raised floor air distribution plenum. The tiles are initially configured upon the commissioning of the facility and, as IT equipment configuration changes with time, the tiles are adjusted accordingly. However, tile adjustment is a manual process that is error-prone and often non-intuitive. Tile flow rates are a strong function of under floor plenum pressure distribution which is subject to change as tile layouts are reconfigured. Thermal models are often developed to assist with layout changes, but these models can be time-consuming to generate and require skilled users to achieve accurate results. This paper presents an adaptive vent tile (AVT) for use in raised floor data centers that can adapt to the needs of nearby IT equipment. We present a multi-input-multi-output (MIMO) AVT controller that automatically and dynamically adjusts a multiplicity of AVT openings in coordination such that thermal management requirements are met with minimum use of airflow. We describe the development of dynamic models and algorithm design of the MIMO controller. The controller was evaluated with a set of AVT units in a production data center environment. Results show that the controller can optimize local airflow distribution, provide fine-grained rack intake temperature control and respond to disturbances in a manner that is not achievable through static distribution of tiles.
UR - http://www.scopus.com/inward/record.url?scp=77953951768&partnerID=8YFLogxK
U2 - 10.1115/InterPACK2009-89035
DO - 10.1115/InterPACK2009-89035
M3 - Conference contribution
AN - SCOPUS:77953951768
SN - 9780791843604
T3 - Proceedings of the ASME InterPack Conference 2009, IPACK2009
SP - 645
EP - 652
BT - Proceedings of the ASME InterPack Conference 2009, IPACK2009
T2 - 2009 ASME InterPack Conference, IPACK2009
Y2 - 19 July 2009 through 23 July 2009
ER -