LuXbeacon - A batteryless beacon for green IoT: Design, modeling, and field tests

Kang Eun Jeon*, James She, Jason Xue, Sang Ha Kim, Soochang Park

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

The maturing deployment of the Internet of Things is gradually realizing new smart applications that strongly leverage recent advances in proximity detection methods. To this end, Bluetooth low energy (BLE) beacons are one of the preferred candidates because of the widespread use of Bluetooth-enabled devices. However, traditional battery-powered BLE beacons suffer from a limited operation lifetime, inducing additional maintenance operations and costs. This paper addresses this issue by proposing design principles for an ambient light energy harvesting BLE beacon capable of perpetual operation in the indoor environment. The contributions made in this paper include: 1) investigation and modeling of related hardware components, namely the BLE beacon, photovoltaic panel, and capacitor; 2) design principles for selecting hardware components subject to varying environmental conditions and application requirements; and 3) prototyping and field-tests to prove its practicality. Through multiple experiments, this paper proves that the design can operate perpetually under 40 lux light intensity, and can last over 17 h once fully charged.

Original languageEnglish
Article number8624348
Pages (from-to)5001-5012
Number of pages12
JournalIEEE Internet of Things Journal
Volume6
Issue number3
DOIs
Publication statusPublished - Jun 2019
Externally publishedYes

Keywords

  • Bluetooth
  • Energy harvesting
  • Internet of Things (IoT)

Fingerprint

Dive into the research topics of 'LuXbeacon - A batteryless beacon for green IoT: Design, modeling, and field tests'. Together they form a unique fingerprint.

Cite this