TY - JOUR
T1 - Male obesity effects on sperm and next-generation cord blood DNA methylation
AU - Potabattula, Ramya
AU - Dittrich, Marcus
AU - Schorsch, Martin
AU - Hahn, Thomas
AU - Haaf, Thomas
AU - Hajj, Nady El
N1 - Publisher Copyright:
© 2019 Potabattula et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - The prevalence of metabolic disorders, in particular obesity has dramatically increased worldwide. Genetic variants explain only a minor part of the obesity epidemic induced by physical inactivity and over-nutrition. Epidemiological studies in humans and animal models indicate that epigenetic changes associated with adverse parental and/or intrauterine factors may contribute to the missing heritability of metabolic disorders. Possible adverse paternal effects are likely transmitted by sperm to the next-generation. To investigate this hypothesis, we have systematically analyzed the effects of male body mass index (BMI) on sperm epigenome and its association with next-generation fetal cord blood (FCB) DNA methylation. Methylation levels of maternally imprinted (PEG1, PEG4, PEG5, and PEG10), paternally imprinted (H19-IG DMR, IGF2-DMR0, and MEG3-IG DMR) regions, and obesity-related non-imprinted HIF3A gene were quantified by bisulphite pyrosequencing in sperm samples of 294 human donors undergoing in vitro fertilization or intracytoplasmic sperm injection, and in 113 FCBs of the resulting offspring. Multivariable regression analyses revealed that MEG3 intergenic differentially methylated region (IG DMR) showed positive correlation between sperm methylation and donor’s BMI. A gender-specific correlation between paternal BMI and FCB methylation was observed for MEG3-IG DMR, HIF3A, and IGF2-DMR0. The former two genes displayed same directional nominal association (as sperm) between paternal BMI and FCB methylation in male offspring. Hypomethylation of IGF2-DMR0 with increased paternal BMI was observed in FCBs from female offsprings. Our results suggest that male obesity is nominally associated with modification of sperm DNA methylome in humans, which may affect the epigenome of the next-generation. Nevertheless, it is important to note that none of the associated p-values survived multiple testing adjustments. Future work should test the effect of associated methylation aberrations in the offspring as DNA methylation was shown to control expression and/or imprint establishment across the studied genes.
AB - The prevalence of metabolic disorders, in particular obesity has dramatically increased worldwide. Genetic variants explain only a minor part of the obesity epidemic induced by physical inactivity and over-nutrition. Epidemiological studies in humans and animal models indicate that epigenetic changes associated with adverse parental and/or intrauterine factors may contribute to the missing heritability of metabolic disorders. Possible adverse paternal effects are likely transmitted by sperm to the next-generation. To investigate this hypothesis, we have systematically analyzed the effects of male body mass index (BMI) on sperm epigenome and its association with next-generation fetal cord blood (FCB) DNA methylation. Methylation levels of maternally imprinted (PEG1, PEG4, PEG5, and PEG10), paternally imprinted (H19-IG DMR, IGF2-DMR0, and MEG3-IG DMR) regions, and obesity-related non-imprinted HIF3A gene were quantified by bisulphite pyrosequencing in sperm samples of 294 human donors undergoing in vitro fertilization or intracytoplasmic sperm injection, and in 113 FCBs of the resulting offspring. Multivariable regression analyses revealed that MEG3 intergenic differentially methylated region (IG DMR) showed positive correlation between sperm methylation and donor’s BMI. A gender-specific correlation between paternal BMI and FCB methylation was observed for MEG3-IG DMR, HIF3A, and IGF2-DMR0. The former two genes displayed same directional nominal association (as sperm) between paternal BMI and FCB methylation in male offspring. Hypomethylation of IGF2-DMR0 with increased paternal BMI was observed in FCBs from female offsprings. Our results suggest that male obesity is nominally associated with modification of sperm DNA methylome in humans, which may affect the epigenome of the next-generation. Nevertheless, it is important to note that none of the associated p-values survived multiple testing adjustments. Future work should test the effect of associated methylation aberrations in the offspring as DNA methylation was shown to control expression and/or imprint establishment across the studied genes.
UR - http://www.scopus.com/inward/record.url?scp=85068999644&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0218615
DO - 10.1371/journal.pone.0218615
M3 - Article
C2 - 31246962
AN - SCOPUS:85068999644
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0218615
ER -