Mixed RF/FSO Relaying Systems with Hardware Impairments

Elyes Balti, Mohsen Guizani, Bechir Hamdaoui, Bassem Khalfi

Research output: Contribution to journalConference articlepeer-review

15 Citations (Scopus)

Abstract

In this work, we provide a detailed analysis of a dual-hop fixed gain (FG) amplify-and-forward relaying system, consisting of a hybrid radio frequency (RF) and free-space optical (FSO) channels. We introduce an impairment model which is the soft envelope limiter (SEL). Additionally, we propose the partial relay selection (PRS) protocol with outdated channel state information (CSI) based on the knowledge of the RF channels in order to select one relay for the communication. Moreover, the RF channels of the first hop experience Rayleigh fading while we propose a unified fading model for the FSO channels, called the unified Gamma Gamma (GG), taking into account the atmospheric turbulence, the path loss and the misalignment between the transmitter and the receiver aperture also called the pointing error. Novel closed-forms of the outage probability (OP), the bit error probability (BEP) and the average ergodic capacity (EC) are derived in terms of Meijer-G and Fox-H functions. Capitalizing on these metrics, we also derive the asymptotical high signal-to-noise ratio (SNR) in order to get engineering insights into the impacts of the hardware impairments and the system parameters as well. Finally, using Monte Carlo simulations, we validate numerically the derived mathematical formulations.

Original languageEnglish
Pages (from-to)1-6
Number of pages6
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
Volume2018-January
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event2017 IEEE Global Communications Conference, GLOBECOM 2017 - Singapore, Singapore
Duration: 4 Dec 20178 Dec 2017

Fingerprint

Dive into the research topics of 'Mixed RF/FSO Relaying Systems with Hardware Impairments'. Together they form a unique fingerprint.

Cite this