Abstract
The quasi-Z source (qZS) cascaded multilevel inverter (CMI) (qZS-CMI) presents attractive advantages in application to photovoltaic (PV) power system. Each PV panel connects to an H-bridge qZS inverter (qZSI) to form a power generation module. The distributed maximum power point tracking and all modules' dc-link peak voltage balance can be achieved. However, it is the same with the conventional CMI that the second-harmonic (2ω) voltage and current ripples exist in each qZSI module. It is crucial for a qZS-CMI to design the reasonable qZS network parameters to limit the ripples within a desired range. This paper proposes an analytic model to accurately calculate the 2ω voltage and current ripples of each qZSI module. A qZS impedance design method based on the built model is proposed to limit the 2ω ripples of dc-link voltage and inductor current. Simulated and experimental results through using the designed 1.5-kW prototype validate the proposed analytic model and the design method. Furthermore, this paper analyzes all of the operating states for a qZSI module and calculates the power loss. The measured efficiency from the prototype verifies the theoretical calculation, and the qZS-CMI-based grid-tie PV power system is tested in practical.
Original language | English |
---|---|
Article number | 6736062 |
Pages (from-to) | 6108-6117 |
Number of pages | 10 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 61 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2014 |
Externally published | Yes |
Keywords
- Circuit modeling
- multilevel inverter
- photovoltaic (PV) power generation
- quasi-Z source (qZS) inverter