TY - GEN
T1 - Multiphase flow in a subsea hilly terrain
AU - Odan, Mohamed
AU - Ben Rajeb, Faraj
AU - Zhang, Yan
AU - Imtiaz, Syed
AU - Aborig, Amer
AU - Rahman, Mohammed Aziz
N1 - Publisher Copyright:
© 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Multiphase flow is an important the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industry. It is especially important to understand the flow behavior of multiphase flow in a subsea hilly terrain and offshore pipelines. Accurate flow regime identification in multiphase flow is critical since multiphase flow affects the measurement accuracy of phase fraction, flow rate and other phase parameters. The main objective of this research work is to obtain a better understanding of the multiphase flow characteristics in a long pipeline. In this study, the results of an experimental research on multiphase flow that investigates fluid characteristics in a pipe has been presented. The experimental unit consists of pipes that are made up of clear PVC, which is capable of producing several different flow regimes (Stratified, bubble, slug, and annular-mist flow) of gas-liquid flows. The entire length of the flow loop is 20.574 m. The experimental unit includes sensors such as pressure transducers, thermocouples and flowmeters that enable to measure the pressure ranges from 20-300KPa, temperature ranges from 0 to 20 °C and volume flow ranges from 12- 45 liter/min at numerous locations respectively. In this experimental work, bubble, and slug flow regimes have been selected in the multiphase flow pattern to be examined on the multiphase flow assurance. The results of this research will provide valuable new experimental data on multiphase flow characteristics for designated flow regimes that can improve flow assurance in subsea conditions by including the temperature and Pressure effects.
AB - Multiphase flow is an important the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industry. It is especially important to understand the flow behavior of multiphase flow in a subsea hilly terrain and offshore pipelines. Accurate flow regime identification in multiphase flow is critical since multiphase flow affects the measurement accuracy of phase fraction, flow rate and other phase parameters. The main objective of this research work is to obtain a better understanding of the multiphase flow characteristics in a long pipeline. In this study, the results of an experimental research on multiphase flow that investigates fluid characteristics in a pipe has been presented. The experimental unit consists of pipes that are made up of clear PVC, which is capable of producing several different flow regimes (Stratified, bubble, slug, and annular-mist flow) of gas-liquid flows. The entire length of the flow loop is 20.574 m. The experimental unit includes sensors such as pressure transducers, thermocouples and flowmeters that enable to measure the pressure ranges from 20-300KPa, temperature ranges from 0 to 20 °C and volume flow ranges from 12- 45 liter/min at numerous locations respectively. In this experimental work, bubble, and slug flow regimes have been selected in the multiphase flow pattern to be examined on the multiphase flow assurance. The results of this research will provide valuable new experimental data on multiphase flow characteristics for designated flow regimes that can improve flow assurance in subsea conditions by including the temperature and Pressure effects.
UR - http://www.scopus.com/inward/record.url?scp=85055470893&partnerID=8YFLogxK
U2 - 10.1115/OMAE2018-77190
DO - 10.1115/OMAE2018-77190
M3 - Conference contribution
AN - SCOPUS:85055470893
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Polar and Arctic Sciences and Technology; Petroleum Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2018
Y2 - 17 June 2018 through 22 June 2018
ER -