Abstract
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer's disease diagnosis task demonstrate the effectiveness of the proposed algorithm.
Original language | English |
---|---|
Pages (from-to) | 2840-2847 |
Number of pages | 8 |
Journal | Pattern Recognition |
Volume | 46 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2013 |
Keywords
- Data representation
- Ensemble manifold regularization
- Graph Laplacian
- Nonnegative matrix factorization