TY - JOUR
T1 - Nanoparticles enhanced phase change materials for thermal energy storage applications
T2 - An assessment
AU - Ismail, M. M.
AU - Dincer, I.
AU - Bicer, Y.
AU - Saghir, M. Z.
N1 - Publisher Copyright:
© 2025 The Author(s)
PY - 2025/5
Y1 - 2025/5
N2 - Effective utilization of Phase Change Materials (PCMs) has gained significant potential for thermal energy storage (TES) applications due to their high latent heat capacity, making them highly efficient for storing thermal energy. This property enables PCMs to serve a critical role in shaping the future of TES systems. However, conventional PCMs face a significant challenge when it comes to low thermal conductivity, hindering their overall performance and broader application. The integration of nanoparticles into PCMs, forming nanoparticles-enhanced PCMs (NPCMs), has emerged as a promising solution to overcome these limitations. NPCMs exhibit improved thermal properties, including higher thermal conductivity, faster temperature response, and increased storage capacity. These enhancements make NPCMs a viable option for addressing the shortcomings of traditional PCMs, thereby improving TES system efficiency and reliability. This perspective article provides a comprehensive overview of NPCMs for thermal energy storage applications, discussing recent advancements, current challenges, and future opportunities. By examining the properties, performance, and integration techniques of NPCMs, this review highlights their potential to revolutionize TES systems and contribute to the development of sustainable energy solutions.
AB - Effective utilization of Phase Change Materials (PCMs) has gained significant potential for thermal energy storage (TES) applications due to their high latent heat capacity, making them highly efficient for storing thermal energy. This property enables PCMs to serve a critical role in shaping the future of TES systems. However, conventional PCMs face a significant challenge when it comes to low thermal conductivity, hindering their overall performance and broader application. The integration of nanoparticles into PCMs, forming nanoparticles-enhanced PCMs (NPCMs), has emerged as a promising solution to overcome these limitations. NPCMs exhibit improved thermal properties, including higher thermal conductivity, faster temperature response, and increased storage capacity. These enhancements make NPCMs a viable option for addressing the shortcomings of traditional PCMs, thereby improving TES system efficiency and reliability. This perspective article provides a comprehensive overview of NPCMs for thermal energy storage applications, discussing recent advancements, current challenges, and future opportunities. By examining the properties, performance, and integration techniques of NPCMs, this review highlights their potential to revolutionize TES systems and contribute to the development of sustainable energy solutions.
KW - Energy storage
KW - Nano enriched phase change material
KW - Sustainability
KW - Thermal conductivity
KW - Thermal storage systems
UR - http://www.scopus.com/inward/record.url?scp=105003003147&partnerID=8YFLogxK
U2 - 10.1016/j.ijft.2025.101207
DO - 10.1016/j.ijft.2025.101207
M3 - Review article
AN - SCOPUS:105003003147
SN - 2666-2027
VL - 27
JO - International Journal of Thermofluids
JF - International Journal of Thermofluids
M1 - 101207
ER -