TY - JOUR
T1 - Near-infrared spectroscopy-derived total haemoglobin as an indicator of changes in muscle blood flow during exercise-induced hyperaemia
AU - Alvares, Thiago Silveira
AU - Oliveira, Gustavo Vieira de
AU - Soares, Rogério
AU - Murias, Juan Manuel
N1 - Publisher Copyright:
© 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2020/4/2
Y1 - 2020/4/2
N2 - Blood flow changes in response to exercise have been attributed, among other factors, to the effect of vasodilators factors on the microvasculature, suggesting a close relationship between small blood vessels and conducting arteries. The main purpose of this study was to determine the relationship between the changes in near infrared spectroscopy (NIRS)-derived total haemoglobin ([tHb]) and muscle oxygen saturation (SmO2) signals and femoral artery blood flow in response to resistance exercise at fast- and slow-velocity muscle contraction. The study randomised crossover design included twelve participants. NIRS and blood flow measurements were continuously monitored before, during, and 5 min after the exercise protocol. There was a significant correlation between [tHb] reperfusion slope ([tHb]slope) and peak blood flow (BFpeak) after slow- and fast-velocity muscle contraction (r = 0.83, p = 0.0008 and r = 0.72, p = 0.0080, respectively). No significant correlation existed between the SmO2 reperfusion slope (SmO2_slope) and BFpeak after both slow- and fast-velocity muscle contraction exercise (r = −0.46, p = 0.1253 and r = 0.33, p = 0.2841, respectively). This study demonstrated a strong relationship between the NIRS-derived [tHb] and Doppler ultrasound BF during the recovery period of dynamic resistance exercise at both slow- and fast-velocity contraction.
AB - Blood flow changes in response to exercise have been attributed, among other factors, to the effect of vasodilators factors on the microvasculature, suggesting a close relationship between small blood vessels and conducting arteries. The main purpose of this study was to determine the relationship between the changes in near infrared spectroscopy (NIRS)-derived total haemoglobin ([tHb]) and muscle oxygen saturation (SmO2) signals and femoral artery blood flow in response to resistance exercise at fast- and slow-velocity muscle contraction. The study randomised crossover design included twelve participants. NIRS and blood flow measurements were continuously monitored before, during, and 5 min after the exercise protocol. There was a significant correlation between [tHb] reperfusion slope ([tHb]slope) and peak blood flow (BFpeak) after slow- and fast-velocity muscle contraction (r = 0.83, p = 0.0008 and r = 0.72, p = 0.0080, respectively). No significant correlation existed between the SmO2 reperfusion slope (SmO2_slope) and BFpeak after both slow- and fast-velocity muscle contraction exercise (r = −0.46, p = 0.1253 and r = 0.33, p = 0.2841, respectively). This study demonstrated a strong relationship between the NIRS-derived [tHb] and Doppler ultrasound BF during the recovery period of dynamic resistance exercise at both slow- and fast-velocity contraction.
KW - Near-infrared spectroscopy
KW - blood flow
KW - microcirculation
KW - resistance exercise
UR - http://www.scopus.com/inward/record.url?scp=85080147958&partnerID=8YFLogxK
U2 - 10.1080/02640414.2020.1733774
DO - 10.1080/02640414.2020.1733774
M3 - Article
C2 - 32106780
AN - SCOPUS:85080147958
SN - 0264-0414
VL - 38
SP - 751
EP - 758
JO - Journal of Sports Sciences
JF - Journal of Sports Sciences
IS - 7
ER -