Negative Differential Resistance in Spin-Crossover Molecular Devices

Dongzhe Li*, Yongfeng Tong, Kaushik Bairagi, Massine Kelai, Yannick J. Dappe, Jérôme Lagoute, Yann Girard, Sylvie Rousset, Vincent Repain, Cyrille Barreteau, Mads Brandbyge, Alexander Smogunov, Amandine Bellec*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a FeII SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with nonequilibrium Green's function (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.

Original languageEnglish
Pages (from-to)7514-7520
Number of pages7
JournalJournal of Physical Chemistry Letters
Volume13
Issue number32
DOIs
Publication statusPublished - 18 Aug 2022
Externally publishedYes

Keywords

  • Bistability
  • Conductance
  • Junctions

Fingerprint

Dive into the research topics of 'Negative Differential Resistance in Spin-Crossover Molecular Devices'. Together they form a unique fingerprint.

Cite this