TY - JOUR
T1 - Noninvasive and in vivo assessment of upper and lower limb skeletal muscle oxidative metabolism activity and microvascular responses to glucose ingestion in humans
AU - Soares, Rogério Nogueira
AU - Colosio, Alessandro L.
AU - Murias, Juan Manuel
AU - Pogliaghi, Silvia
N1 - Publisher Copyright:
© 2019, Canadian Science Publishing. All rights reserved.
PY - 2019
Y1 - 2019
N2 - This study investigated changes in muscle oxidative metabolism and microvascular responsiveness induced by glucose ingestion in the upper and lower limbs using near-infrared spectroscopy (NIRS). Fourteen individuals (aged 27 ± 1.4 years) underwent 5 vascular occlusion tests (VOT) (pre-intervention (Pre), 30 min, 60 min, 90 min, and 120 min after glucose challenge). NIRS-derived oxygen saturation (StO2) was measured on the forearm and leg muscle at each VOT. Muscle oxidative metabolism was determined by the StO2 downslope during cuff inflation (deoxygenation slope); microvascular responsiveness was estimated by the StO2 upslope (reperfusion slope) following cuff deflation. There was a significant increase in arm (p < 0.05; 1-β = 0.860) and leg (p < 0.05; 1-β = 1.000) oxidative metabolism activity as represented by the faster deoxygenation slope at 60, 90, and 120 min (0.08 ± 0.03, 0.08 ± 0.03, 0.08 ± 0.02%·s–1, respectively) (leg) and at 90 min (0.16 ± 0.08%·s−1) (arm) observed after glucose ingestion when compared with their respective Pre values (leg = 0.06 ± 0.02; arm = 0.11 ± 0.04%·s−1). There was a significant increase in arm (p < 0.05; 1-β = 0.880) and leg (p < 0.05; 1-β = 0.983) reperfusion slope at 60 min (arm = 3.63 ± 2.1%·s−1; leg = 1.56 ± 0.6%·s−1), 90 min (arm = 3.91 ± 2.1%·s−1; leg = 1.60 ± 0.6%·s−1), and 120 min (arm = 3.91 ± 1.6%·s−1; leg = 1.54 ± 0.6%·s−1) when compared with their Pre values (arm = 2.79 ± 1.7%·s−1; leg = 1.26 ± 0.5%·s−1). Our findings showed that NIRS–VOT technique is capable of detecting postprandial changes in muscle oxidative metabolism activity and microvascular reactivity in the upper and lower limb. Novelty • NIRS-VOT is a promising noninvasive clinical approach that may help in the early, limb-specific detection of impairments in glucose oxidation and microvascular function.
AB - This study investigated changes in muscle oxidative metabolism and microvascular responsiveness induced by glucose ingestion in the upper and lower limbs using near-infrared spectroscopy (NIRS). Fourteen individuals (aged 27 ± 1.4 years) underwent 5 vascular occlusion tests (VOT) (pre-intervention (Pre), 30 min, 60 min, 90 min, and 120 min after glucose challenge). NIRS-derived oxygen saturation (StO2) was measured on the forearm and leg muscle at each VOT. Muscle oxidative metabolism was determined by the StO2 downslope during cuff inflation (deoxygenation slope); microvascular responsiveness was estimated by the StO2 upslope (reperfusion slope) following cuff deflation. There was a significant increase in arm (p < 0.05; 1-β = 0.860) and leg (p < 0.05; 1-β = 1.000) oxidative metabolism activity as represented by the faster deoxygenation slope at 60, 90, and 120 min (0.08 ± 0.03, 0.08 ± 0.03, 0.08 ± 0.02%·s–1, respectively) (leg) and at 90 min (0.16 ± 0.08%·s−1) (arm) observed after glucose ingestion when compared with their respective Pre values (leg = 0.06 ± 0.02; arm = 0.11 ± 0.04%·s−1). There was a significant increase in arm (p < 0.05; 1-β = 0.880) and leg (p < 0.05; 1-β = 0.983) reperfusion slope at 60 min (arm = 3.63 ± 2.1%·s−1; leg = 1.56 ± 0.6%·s−1), 90 min (arm = 3.91 ± 2.1%·s−1; leg = 1.60 ± 0.6%·s−1), and 120 min (arm = 3.91 ± 1.6%·s−1; leg = 1.54 ± 0.6%·s−1) when compared with their Pre values (arm = 2.79 ± 1.7%·s−1; leg = 1.26 ± 0.5%·s−1). Our findings showed that NIRS–VOT technique is capable of detecting postprandial changes in muscle oxidative metabolism activity and microvascular reactivity in the upper and lower limb. Novelty • NIRS-VOT is a promising noninvasive clinical approach that may help in the early, limb-specific detection of impairments in glucose oxidation and microvascular function.
KW - Glucose
KW - Microvasculature
KW - NIRS
KW - Oxidative metabolism
KW - Oxygen consumption
KW - Skeletal muscle
UR - http://www.scopus.com/inward/record.url?scp=85065543633&partnerID=8YFLogxK
U2 - 10.1139/apnm-2018-0866
DO - 10.1139/apnm-2018-0866
M3 - Article
C2 - 30802136
AN - SCOPUS:85065543633
SN - 1715-5312
VL - 44
SP - 1105
EP - 1111
JO - Applied Physiology, Nutrition and Metabolism
JF - Applied Physiology, Nutrition and Metabolism
IS - 10
ER -