TY - JOUR
T1 - Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan
AU - Al Marri, Saeed H.
AU - Manawi, Yehia
AU - Simson, Simjo
AU - Lawler, Jenny
AU - Kochkodan, Viktor
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/1
Y1 - 2025/1
N2 - The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.1–4.0 wt.% CAR loadings in the casting solutions. The use of dimethylsulfoxide (DMSO), which is a bio-based and low-toxic solvent, is reported. Scanning electron microscopy, atomic force microscopy, water contact angle, porosity, and zeta potential measurements were used to evaluate the surface morphology, structure, pore size, hydrophilicity, and surface charge of the prepared membranes. The filtration performance of PES/CAR membranes was tested with bovine serum albumin (BSA) solutions. It was shown that CAR incorporation in the casting solutions notably increased hydrophilicity, porosity, pore size, surface charge, and fouling resistance of the prepared membranes compared with plain PES membranes due to the hydrophilic nature and pore-forming properties of CAR. The PES/CAR membranes showed a significant reduction in irreversible and total fouling during filtration of BSA solutions by 38% and 32%, respectively, an enhancement in the flux recovery ratio by 20–40%, and an improvement in mechanical properties by 1.5-fold when compared with plain PES membranes. The findings of the present study indicate that CAR can be used as a promising additive for the development of PES UF membranes with enhanced properties and performance for water treatment applications.
AB - The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.1–4.0 wt.% CAR loadings in the casting solutions. The use of dimethylsulfoxide (DMSO), which is a bio-based and low-toxic solvent, is reported. Scanning electron microscopy, atomic force microscopy, water contact angle, porosity, and zeta potential measurements were used to evaluate the surface morphology, structure, pore size, hydrophilicity, and surface charge of the prepared membranes. The filtration performance of PES/CAR membranes was tested with bovine serum albumin (BSA) solutions. It was shown that CAR incorporation in the casting solutions notably increased hydrophilicity, porosity, pore size, surface charge, and fouling resistance of the prepared membranes compared with plain PES membranes due to the hydrophilic nature and pore-forming properties of CAR. The PES/CAR membranes showed a significant reduction in irreversible and total fouling during filtration of BSA solutions by 38% and 32%, respectively, an enhancement in the flux recovery ratio by 20–40%, and an improvement in mechanical properties by 1.5-fold when compared with plain PES membranes. The findings of the present study indicate that CAR can be used as a promising additive for the development of PES UF membranes with enhanced properties and performance for water treatment applications.
KW - Carrageenan
KW - Polyethersulfone
KW - Ultrafiltration
KW - Ultrafiltration membrane
KW - Water flux
KW - Water treatment
UR - http://www.scopus.com/inward/record.url?scp=85215755438&partnerID=8YFLogxK
U2 - 10.3390/polym17020176
DO - 10.3390/polym17020176
M3 - Article
AN - SCOPUS:85215755438
SN - 2073-4360
VL - 17
JO - Polymers
JF - Polymers
IS - 2
M1 - 176
ER -