TY - JOUR
T1 - On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network
AU - Minallah, Nasru
AU - Tariq, Mohsin
AU - Aziz, Najam
AU - Khan, Waleed
AU - ur Rehman, Atiq
AU - Belhaouari, Samir Brahim
N1 - Publisher Copyright:
Copyright: © 2020 Minallah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/9
Y1 - 2020/9
N2 - This research work aims to develop a deep learning-based crop classification framework for remotely sensed time series data. Tobacco is a major revenue generating crop of Khyber Pakhtunkhwa (KP) province of Pakistan, with over 90% of the country’s Tobacco production. In order to analyze the performance of the developed classification framework, a pilot sub-region named Yar Hussain is selected for experimentation work. Yar Hussain is a tehsil of district Swabi, within KP province of Pakistan, having highest contribution to the gross production of the KP Tobacco crop. KP generally consists of a diverse crop land with different varieties of vegetation, having similar phenology which makes crop classification a challenging task. In this study, a temporal convolutional neural network (TempCNNs) model is implemented for crop classification, while considering remotely sensed imagery of the selected pilot region with specific focus on the Tobacco crop. In order to improve the performance of the proposed classification framework, instead of using the prevailing concept of utilizing a single satellite imagery, both Sentinel-2 and Planet-Scope imageries are stacked together to assist in providing more diverse features to the proposed classification framework. Furthermore, instead of using a single date satellite imagery, multiple satellite imageries with respect to the phenological cycle of Tobacco crop are temporally stacked together which resulted in a higher temporal resolution of the employed satellite imagery. The developed framework is trained using the ground truth data. The final output is obtained as an outcome of the SoftMax function of the developed model in the form of probabilistic values, for the classification of the selected classes. The proposed deep learning-based crop classification framework, while utilizing multi-satellite temporally stacked imagery resulted in an overall classification accuracy of 98.15%. Furthermore, as the developed classification framework evolved with specific focus on Tobacco crop, it resulted in best Tobacco crop classification accuracy of 99%.
AB - This research work aims to develop a deep learning-based crop classification framework for remotely sensed time series data. Tobacco is a major revenue generating crop of Khyber Pakhtunkhwa (KP) province of Pakistan, with over 90% of the country’s Tobacco production. In order to analyze the performance of the developed classification framework, a pilot sub-region named Yar Hussain is selected for experimentation work. Yar Hussain is a tehsil of district Swabi, within KP province of Pakistan, having highest contribution to the gross production of the KP Tobacco crop. KP generally consists of a diverse crop land with different varieties of vegetation, having similar phenology which makes crop classification a challenging task. In this study, a temporal convolutional neural network (TempCNNs) model is implemented for crop classification, while considering remotely sensed imagery of the selected pilot region with specific focus on the Tobacco crop. In order to improve the performance of the proposed classification framework, instead of using the prevailing concept of utilizing a single satellite imagery, both Sentinel-2 and Planet-Scope imageries are stacked together to assist in providing more diverse features to the proposed classification framework. Furthermore, instead of using a single date satellite imagery, multiple satellite imageries with respect to the phenological cycle of Tobacco crop are temporally stacked together which resulted in a higher temporal resolution of the employed satellite imagery. The developed framework is trained using the ground truth data. The final output is obtained as an outcome of the SoftMax function of the developed model in the form of probabilistic values, for the classification of the selected classes. The proposed deep learning-based crop classification framework, while utilizing multi-satellite temporally stacked imagery resulted in an overall classification accuracy of 98.15%. Furthermore, as the developed classification framework evolved with specific focus on Tobacco crop, it resulted in best Tobacco crop classification accuracy of 99%.
UR - http://www.scopus.com/inward/record.url?scp=85092042044&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0239746
DO - 10.1371/journal.pone.0239746
M3 - Article
C2 - 32986785
AN - SCOPUS:85092042044
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 9 September
M1 - e0239746
ER -