Passivity-Based Control Strategy for Single-Phase Three-Level T-Type PWM Rectifiers

Hasan Komurcugil, Sertac Bayhan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper presents a passivity-based control (PBC) strategy for single-phase three-level T-type rectifiers. The proposed PBC strategy is based on energy shaping and damping injection. First of all, in order to decide about the type of damping injection, the mathematical model of the rectifier is derived. Then, the control input, from which the pulse width modulation signals are produced, is obtained from this model. Based on the obtained mathematical model, the damping injection is applied accordingly. The amplitude of reference grid current is calculated from the power balance equation of the rectifier. In order to satisfy the unity power factor requirement, the calculated reference amplitude is multiplied by the sinusoidal waveform template generated from the grid supply. The performance of the proposed PBC strategy is investigated by simulations during steady-state and transient due to the load change. It is shown that the dc output voltage is regulated at desired level and grid current tracks its reference in both cases.

Original languageEnglish
Title of host publication2020 IEEE 29th International Symposium on Industrial Electronics, ISIE 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1179-1184
Number of pages6
ISBN (Electronic)9781728156354
DOIs
Publication statusPublished - Jun 2020
Event29th IEEE International Symposium on Industrial Electronics, ISIE 2020 - Delft, Netherlands
Duration: 17 Jun 202019 Jun 2020

Publication series

NameIEEE International Symposium on Industrial Electronics
Volume2020-June

Conference

Conference29th IEEE International Symposium on Industrial Electronics, ISIE 2020
Country/TerritoryNetherlands
CityDelft
Period17/06/2019/06/20

Keywords

  • Three-level T-type rectifier
  • damping injection
  • passivity-based control

Fingerprint

Dive into the research topics of 'Passivity-Based Control Strategy for Single-Phase Three-Level T-Type PWM Rectifiers'. Together they form a unique fingerprint.

Cite this