Performance of the CMS electromagnetic calorimeter in pp collisions at √s = 13 TeV

The CMS collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The operation and performance of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) are presented, based on data collected in pp collisions at √s = 13 TeV at the CERN LHC, in the years from 2015 to 2018 (LHC Run 2), corresponding to an integrated luminosity of 151 fb-1. The CMS ECAL is a scintillating lead-tungstate crystal calorimeter, with a silicon strip preshower detector in the forward region that provides precise measurements of the energy and the time-of-arrival of electrons and photons. The successful operation of the ECAL is crucial for a broad range of physics goals, ranging from observing the Higgs boson and measuring its properties, to other standard model measurements and searches for new phenomena. Precise calibration, alignment, and monitoring of the ECAL response are important ingredients to achieve these goals. To face the challenges posed by the higher luminosity, which characterized the operation of the LHC in Run 2, the procedures established during the 2011-2012 run of the LHC have been revisited and new methods have been developed for the energy measurement and for the ECAL calibration. The energy resolution of the calorimeter, for electrons from Z boson decays reaching the ECAL without significant loss of energy by bremsstrahlung, was better than 1.8%, 3.0%, and 4.5% in the |η| intervals [0.0,0.8], [0.8,1.5], [1.5, 2.5], respectively. This resulting performance is similar to that achieved during Run 1 in 2011-2012, in spite of the more severe running conditions.

Original languageEnglish
Article numberP09004
JournalJournal of Instrumentation
Volume19
Issue number9
DOIs
Publication statusPublished - 1 Sept 2024
Externally publishedYes

Keywords

  • Gamma detectors (scintillators, CZT, HPGe, HgI etc)
  • Large detector systems for particle and astroparticle physics

Fingerprint

Dive into the research topics of 'Performance of the CMS electromagnetic calorimeter in pp collisions at √s = 13 TeV'. Together they form a unique fingerprint.

Cite this