Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics

Ariane Khaledi, Aaron Weimann, Monika Schniederjans, Ehsaneddin Asgari, Tzu Hao Kuo, Antonio Oliver, Gabriel Cabot, Axel Kola, Petra Gastmeier, Michael Hogardt, Daniel Jonas, Mohammad R.K. Mofrad, Andreas Bremges, Alice C. McHardy*, Susanne Häussler

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

124 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics'. Together they form a unique fingerprint.

Keyphrases

Biochemistry, Genetics and Molecular Biology

Medicine and Dentistry

Immunology and Microbiology