Abstract
We address the problem of predicting the leading political ideology, i.e., left-center-right bias, for YouTube channels of news media. Previous work on the problem has focused exclusively on text and on analysis of the language used, topics discussed, sentiment, and the like. In contrast, here we study videos, which yields an interesting multimodal setup. Starting with gold annotations about the leading political ideology of major world news media from Media Bias/Fact Check, we searched on YouTube to find their corresponding channels, and we downloaded a recent sample of videos from each channel. We crawled more than 1,000 YouTube hours along with the corresponding subtitles and metadata, thus producing a new multimodal dataset. We further developed a multimodal deep-learning architecture for the task. Our analysis shows that the use of acoustic signal helped to improve bias detection by more than 6% absolute over using text and metadata only. We release the dataset to the research community, hoping to help advance the field of multi-modal political bias detection.
Original language | English |
---|---|
Pages (from-to) | 501-505 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2019-September |
DOIs | |
Publication status | Published - 2019 |
Event | 20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria Duration: 15 Sept 2019 → 19 Sept 2019 |
Keywords
- Bias detection
- Political ideology
- Propaganda