Privacy-preserving spatial crowdsourcing based on anonymous credentials

Xun Yi*, Fang Yu Rao, Gabriel Ghinita, Elisa Bertino

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

In Spatial Crowdsourcing (SC), a set of spatio-temporal tasks are outsourced to a set of workers, i.e., individuals with mobile devices who physically travel to task locations. The process of matching workers to tasks is performed by a SC server. To perform matching, the SC server needs access to worker locations. However, the SC server may not be trustworthy. Current solutions for protecting locations of workers assume that a trusted cellular service provider (CSP) knows the identities and locations of workers and sanitizes locations before sharing them with the SC server. In practice, the CSP may not have the technical ability, nor the proper incentives to perform the sanitization task. Thus, location protection must be performed by a Location Privacy Provider (LPP). To prevent identity disclosure to the LPP, we propose a novel solution based on anonymous credentials which preserves worker privacy. Our solution allows registered workers to log on to the LPP and receive tasks from the SC-server anonymously. In addition, our solution assures the confidentiality and integrity of spatial tasks. Our implementation and experiments demonstrate that our solution is practical.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE 19th International Conference on Mobile Data Management, MDM 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages187-196
Number of pages10
ISBN (Electronic)9781538641330
DOIs
Publication statusPublished - 13 Jul 2018
Externally publishedYes
Event19th IEEE International Conference on Mobile Data Management, MDM 2018 - Aalborg, Denmark
Duration: 26 Jun 201828 Jun 2018

Publication series

NameProceedings - IEEE International Conference on Mobile Data Management
Volume2018-June
ISSN (Print)1551-6245

Conference

Conference19th IEEE International Conference on Mobile Data Management, MDM 2018
Country/TerritoryDenmark
CityAalborg
Period26/06/1828/06/18

Keywords

  • location privacy
  • spatial crowdsourcing

Fingerprint

Dive into the research topics of 'Privacy-preserving spatial crowdsourcing based on anonymous credentials'. Together they form a unique fingerprint.

Cite this