Radar imaging of stationary indoor targets using joint low-rank and sparsity constraints

V. H. Tang, A. Bouzerdoum, S. L. Phung, F. H.C. Tivive

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Citations (Scopus)

Abstract

This paper introduces a joint low-rank and sparsity-based model to address the problem of wall-clutter mitigation in compressed through-the-wall radar imaging. The proposed model is motivated by two observations that wall reflections reside in a low-rank subspace, and target signals tend to be sparse. In the proposed approach, the task of segregating target returns from wall reflections is formulated as a joint low-rank and sparsity constrained optimization problem. Here, the low rank constraint is imposed on the wall component and the sparsity constraint is used to model the target component. An iterative soft thresholding algorithm is developed to estimate a low-rank matrix of wall clutter and a sparse matrix of target reflections from a reduced measurement set. Once the wall and target components are estimated, the target signals are used for scene reconstruction. Experimental evaluation was conducted using real radar data. The results show that the proposed model is very effective at removing wall clutter and reconstructing the image of behind-the-wall targets from reduced measurements.

Original languageEnglish
Title of host publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1412-1416
Number of pages5
ISBN (Electronic)9781479999880
DOIs
Publication statusPublished - 18 May 2016
Externally publishedYes
Event41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
Duration: 20 Mar 201625 Mar 2016

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2016-May
ISSN (Print)1520-6149

Conference

Conference41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Country/TerritoryChina
CityShanghai
Period20/03/1625/03/16

Keywords

  • Through-the-wall radar imaging
  • compressed sensing
  • low-rank matrix recovery
  • sparse reconstruction
  • wall clutter mitigation

Fingerprint

Dive into the research topics of 'Radar imaging of stationary indoor targets using joint low-rank and sparsity constraints'. Together they form a unique fingerprint.

Cite this