TY - JOUR
T1 - Rare structural variants, aneuploidies, and mosaicism in individuals with Mullerian aplasia detected by optical genome mapping
AU - Brakta, Soumia
AU - Hawkins, Zoe A.
AU - Sahajpal, Nikhil
AU - Seman, Natalie
AU - Kira, Dina
AU - Chorich, Lynn P.
AU - Kim, Hyung Goo
AU - Xu, Hongyan
AU - Phillips, John A.
AU - Kolhe, Ravindra
AU - Layman, Lawrence C.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/4
Y1 - 2023/4
N2 - The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells—t(7;14)(q32;q32), confirmation of a previously identified translocation—t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified—25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.
AB - The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells—t(7;14)(q32;q32), confirmation of a previously identified translocation—t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified—25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.
UR - http://www.scopus.com/inward/record.url?scp=85148083417&partnerID=8YFLogxK
U2 - 10.1007/s00439-023-02522-8
DO - 10.1007/s00439-023-02522-8
M3 - Article
C2 - 36797380
AN - SCOPUS:85148083417
SN - 0340-6717
VL - 142
SP - 483
EP - 494
JO - Human Genetics
JF - Human Genetics
IS - 4
ER -