RNN simulations of grammaticality judgments on long-distance dependencies

Shammur Absar Chowdhury, Roberto Zamparelli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

43 Citations (Scopus)

Abstract

The paper explores the ability of LSTM networks trained on a language modeling task to detect linguistic structures which are ungrammatical due to extraction violations (extra arguments and subject-relative clause island violations), and considers its implications for the debate on language innatism. The results show that the current RNN model can correctly classify (un)grammatical sentences, in certain conditions, but it is sensitive to linguistic processing factors and probably ultimately unable to induce a more abstract notion of grammaticality, at least in the domain we tested.

Original languageEnglish
Title of host publicationCOLING 2018 - 27th International Conference on Computational Linguistics, Proceedings
EditorsEmily M. Bender, Leon Derczynski, Pierre Isabelle
PublisherAssociation for Computational Linguistics (ACL)
Pages133-144
Number of pages12
ISBN (Electronic)9781948087506
Publication statusPublished - 2018
Externally publishedYes
Event27th International Conference on Computational Linguistics, COLING 2018 - Santa Fe, United States
Duration: 20 Aug 201826 Aug 2018

Publication series

NameCOLING 2018 - 27th International Conference on Computational Linguistics, Proceedings

Conference

Conference27th International Conference on Computational Linguistics, COLING 2018
Country/TerritoryUnited States
CitySanta Fe
Period20/08/1826/08/18

Fingerprint

Dive into the research topics of 'RNN simulations of grammaticality judgments on long-distance dependencies'. Together they form a unique fingerprint.

Cite this