TY - JOUR
T1 - Robust Differentiation of Human iPSCs into a Pure Population of Adipocytes to Study Adipocyte-Associated Disorders
AU - Aghadi, Maryam
AU - Karam, Manale
AU - Abdelalim, Essam M.
N1 - Publisher Copyright:
© 2022 JoVE Journal of Visualized Experiments.
PY - 2022/2
Y1 - 2022/2
N2 - Recent advances in induced pluripotent stem cell (iPSC) technology have allowed the generation of different cell types, including adipocytes. However, the current differentiation methods have low efficiency and do not produce a homogenous population of adipocytes. Here, we circumvent this problem by using an all-trans retinoic-based method to produce mesenchymal stem cells (MSCs) in high yield. By regulating pathways governing cell proliferation, survival, and adhesion, our differentiation strategy allows the efficient generation of embryonic bodies (EBs) that differentiate into a pure population of multipotent MSCs. The high number of MSCs generated by this method provides an ideal source for generating adipocytes. However, sample heterogeneity resulting from adipocyte differentiation remains a challenge. Therefore, we used a Nile red-based method for purifying lipid-bearing mature adipocytes using FACS. This sorting strategy allowed us to establish a reliable way to model adipocyte-associated metabolic disorders using a pool of adipocytes with reduced sample heterogeneity and enhanced cell functionality.
AB - Recent advances in induced pluripotent stem cell (iPSC) technology have allowed the generation of different cell types, including adipocytes. However, the current differentiation methods have low efficiency and do not produce a homogenous population of adipocytes. Here, we circumvent this problem by using an all-trans retinoic-based method to produce mesenchymal stem cells (MSCs) in high yield. By regulating pathways governing cell proliferation, survival, and adhesion, our differentiation strategy allows the efficient generation of embryonic bodies (EBs) that differentiate into a pure population of multipotent MSCs. The high number of MSCs generated by this method provides an ideal source for generating adipocytes. However, sample heterogeneity resulting from adipocyte differentiation remains a challenge. Therefore, we used a Nile red-based method for purifying lipid-bearing mature adipocytes using FACS. This sorting strategy allowed us to establish a reliable way to model adipocyte-associated metabolic disorders using a pool of adipocytes with reduced sample heterogeneity and enhanced cell functionality.
UR - http://www.scopus.com/inward/record.url?scp=85125364775&partnerID=8YFLogxK
U2 - 10.3791/63311
DO - 10.3791/63311
M3 - Article
C2 - 35225274
AN - SCOPUS:85125364775
SN - 1940-087X
VL - 2022
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 180
M1 - e63311
ER -