TY - GEN
T1 - Robust text classifier on test-time budgets
AU - Parvez, Md Rizwan
AU - Bolukbasi, Tolga
AU - Chang, Kai Wei
AU - Saligrama, Venkatesh
N1 - Publisher Copyright:
© 2019 Association for Computational Linguistics
PY - 2019
Y1 - 2019
N2 - We design a generic framework for learning a robust text classification model that achieves high accuracy under different selection budgets (a.k.a selection rates) at test-time. We take a different approach from existing methods and learn to dynamically filter a large fraction of unimportant words by a low-complexity selector such that any high-complexity classifier only needs to process a small fraction of text, relevant for the target task. To this end, we propose a data aggregation method for training the classifier, allowing it to achieve competitive performance on fractured sentences. On four benchmark text classification tasks, we demonstrate that the framework gains consistent speedup with little degradation in accuracy on various selection budgets.
AB - We design a generic framework for learning a robust text classification model that achieves high accuracy under different selection budgets (a.k.a selection rates) at test-time. We take a different approach from existing methods and learn to dynamically filter a large fraction of unimportant words by a low-complexity selector such that any high-complexity classifier only needs to process a small fraction of text, relevant for the target task. To this end, we propose a data aggregation method for training the classifier, allowing it to achieve competitive performance on fractured sentences. On four benchmark text classification tasks, we demonstrate that the framework gains consistent speedup with little degradation in accuracy on various selection budgets.
UR - http://www.scopus.com/inward/record.url?scp=85084308935&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084308935
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 1167
EP - 1172
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics
T2 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Y2 - 3 November 2019 through 7 November 2019
ER -