TY - JOUR
T1 - Scalable synthesis of Co2C-covered NiTe (Co2C-NiTe) nanosheets as an efficient electrocatalyst for HER & OER in an alkaline medium
AU - Munawar, Tauseef
AU - Bashir, Ambreen
AU - El-Marghany, Adel
AU - Shen, Lisha
AU - Tu, Zhiming
AU - Fatima, Saman
AU - Ghafoor Abid, Abdul
AU - Alim Khan, Shoukat
AU - Koc, Muammer
AU - Yan, Chang Feng
AU - Iqbal, Faisal
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/11/1
Y1 - 2024/11/1
N2 - To tackle global carbon conditions, renewable energy-powered electrochemical water splitting is a promising energy conversion device that can enhance the sustainable hydrogen output of the next generation. Regarding large-scale water splitting, novel non-noble metal-based heterostructures focus on constructing highly efficient electrocatalysts with unique interfaces toward hydrogen and oxygen evolution reactions. In this work, to facilitate the limited number of defects in the pure Co2C and NiTe electrocatalysts, we report that NiTe nanoflakes are coupled with a dispersed nanosheet network of the Co2C to develop a Co2C-NiTe composite by interface engineering strategy using a hydrothermal approach. XRD, IV, BET, TEM, XPS, and EDX mapping technologies investigated the 3D structure of as-grown Co2C-NiTe/SS. Electrochemical test results revealed that our best-performing electrocatalyst delivers a 10 mAcm−2 with low overpotentials of 279 mV and 227 mV for oxidation and reduction reactions, respectively. Remarkably, this catalyst achieves good stability, reaching up to 90 h in one mol alkaline medium. We showed that this excellent activity of Co2C-NiTe is primarily due to the abundant interfacial area and stable anchoring sites, which improve the adsorption–desorption energy for hydroxide/oxyhydroxide species and thereby provide a fast electron transfer rate for OER/HER. In addition, a synergistic effect of Co2C with NiTe presents high electrical conductivity over counterpart electrocatalysts.
AB - To tackle global carbon conditions, renewable energy-powered electrochemical water splitting is a promising energy conversion device that can enhance the sustainable hydrogen output of the next generation. Regarding large-scale water splitting, novel non-noble metal-based heterostructures focus on constructing highly efficient electrocatalysts with unique interfaces toward hydrogen and oxygen evolution reactions. In this work, to facilitate the limited number of defects in the pure Co2C and NiTe electrocatalysts, we report that NiTe nanoflakes are coupled with a dispersed nanosheet network of the Co2C to develop a Co2C-NiTe composite by interface engineering strategy using a hydrothermal approach. XRD, IV, BET, TEM, XPS, and EDX mapping technologies investigated the 3D structure of as-grown Co2C-NiTe/SS. Electrochemical test results revealed that our best-performing electrocatalyst delivers a 10 mAcm−2 with low overpotentials of 279 mV and 227 mV for oxidation and reduction reactions, respectively. Remarkably, this catalyst achieves good stability, reaching up to 90 h in one mol alkaline medium. We showed that this excellent activity of Co2C-NiTe is primarily due to the abundant interfacial area and stable anchoring sites, which improve the adsorption–desorption energy for hydroxide/oxyhydroxide species and thereby provide a fast electron transfer rate for OER/HER. In addition, a synergistic effect of Co2C with NiTe presents high electrical conductivity over counterpart electrocatalysts.
KW - Alkaline water splitting
KW - CoC-NiTe
KW - Electronic interaction
KW - Hydrogen evolution
KW - Interface engineering
KW - Oxygen evolution
UR - http://www.scopus.com/inward/record.url?scp=85199258504&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2024.132445
DO - 10.1016/j.fuel.2024.132445
M3 - Article
AN - SCOPUS:85199258504
SN - 0016-2361
VL - 375
JO - Fuel
JF - Fuel
M1 - 132445
ER -