TY - GEN
T1 - Secure dynamic skyline queries using result materialization
AU - Zeighami, Sepanta
AU - Ghinita, Gabriel
AU - Shahabi, Cyrus
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/4
Y1 - 2021/4
N2 - Skyline computation is an increasingly popular query, with broad applicability to many domains. Given the trend to outsource databases, and due to the sensitive nature of the data (e.g., in healthcare), it is essential to evaluate skylines on encrypted datasets. Research efforts acknowledged the importance of secure skyline computation, but existing solutions suffer from several shortcomings: (i) they only provide ad-hoc security; (ii) they are prohibitively expensive; or (iii) they rely on assumptions such as the presence of multiple non-colluding parties in the protocol. Inspired by solutions for secure nearest-neighbors, we conjecture that a secure and efficient way to compute skylines is through result materialization. However, materialization is much more challenging for skylines queries due to large space requirements. We show that pre-computing skyline results while minimizing storage overhead is NP-hard, and we provide heuristics that solve the problem more efficiently, while maintaining storage at reasonable levels. Our algorithms are novel and also applicable to regular skyline computation, but we focus on the encrypted setting where materialization reduces the response time of skyline queries from hours to seconds. Extensive experiments show that we clearly outperform existing work in terms of performance, and our security analysis proves that we obtain a small (and quantifiable) data leakage.
AB - Skyline computation is an increasingly popular query, with broad applicability to many domains. Given the trend to outsource databases, and due to the sensitive nature of the data (e.g., in healthcare), it is essential to evaluate skylines on encrypted datasets. Research efforts acknowledged the importance of secure skyline computation, but existing solutions suffer from several shortcomings: (i) they only provide ad-hoc security; (ii) they are prohibitively expensive; or (iii) they rely on assumptions such as the presence of multiple non-colluding parties in the protocol. Inspired by solutions for secure nearest-neighbors, we conjecture that a secure and efficient way to compute skylines is through result materialization. However, materialization is much more challenging for skylines queries due to large space requirements. We show that pre-computing skyline results while minimizing storage overhead is NP-hard, and we provide heuristics that solve the problem more efficiently, while maintaining storage at reasonable levels. Our algorithms are novel and also applicable to regular skyline computation, but we focus on the encrypted setting where materialization reduces the response time of skyline queries from hours to seconds. Extensive experiments show that we clearly outperform existing work in terms of performance, and our security analysis proves that we obtain a small (and quantifiable) data leakage.
KW - Searchable encryption
KW - Skyline queries
UR - http://www.scopus.com/inward/record.url?scp=85112868558&partnerID=8YFLogxK
U2 - 10.1109/ICDE51399.2021.00021
DO - 10.1109/ICDE51399.2021.00021
M3 - Conference contribution
AN - SCOPUS:85112868558
T3 - Proceedings - International Conference on Data Engineering
SP - 157
EP - 168
BT - Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
PB - IEEE Computer Society
T2 - 37th IEEE International Conference on Data Engineering, ICDE 2021
Y2 - 19 April 2021 through 22 April 2021
ER -