Simulation of high-temperature aa5083 bulge forming with a hardening/softening material model

F. S. Jarrar, F. K. Abu-Farha, L. G. Hector, M. K. Khraisheh

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

High-temperature bulge forming of AA5083 aluminum sheet was simulated with the commercial finite element (FE) code ABAQUS TM. A material model that is strain rate sensitive and accounts for strain hardening and softening was used. Results were compared with data from AA5083 bulge forming experiments at 450 °C where the gas pressure was a prescribed constant value. The results show that the material model is capable of predicting the deformation and thinning behavior at different constant pressure levels. In ancillary simulations, time-varying pressure profiles were computed (rather than prescribed) with an internal ABAQUS TM routine that attempts to maintain the strain rate at the bulge dome pole within a specified range. The time-varying profiles, for which no experimental AA5083 bulge forming data exist, can be programmed into existing bulge testing instrumentation to validate the associated predictions of bulge dome height and thinning. The present effort represents a necessary step toward predicting gas pressure profiles by coupling the pressure profile with a desired sheet deformation rate.

Original languageEnglish
Pages (from-to)863-870
Number of pages8
JournalJournal of Materials Engineering and Performance
Volume18
Issue number7
DOIs
Publication statusPublished - Oct 2009
Externally publishedYes

Keywords

  • AA5083
  • Bulge forming
  • Quickplastic forming
  • Superplastic forming

Fingerprint

Dive into the research topics of 'Simulation of high-temperature aa5083 bulge forming with a hardening/softening material model'. Together they form a unique fingerprint.

Cite this