TY - GEN
T1 - Socializing or knowledge sharing? Characterizing social intent in community question answering
AU - Mendes Rodrigues, Eduarda
AU - Milic-Frayling, Natasa
PY - 2009
Y1 - 2009
N2 - Knowledge sharing communities, such as Wikipedia or Yahoo! Answers, add greatly to the wealth of information available on the Web. They represent complex social ecosystems that rely on user paricipation and the quality of users' contributions to prosper. However, quality is harder to achieve when knowledge sharing is facilitated through a high degree of personal interactions. The individuals' objectives may change from knowledge sharing to socializing, with a profound impact on the community and the value it delivers to the broader population of Web users. In this paper we provide new insights into the types of content that is shared through Community Question Answering (CQA) services. We demonstrate an approach that combines in-depth content analysis with social network analysis techniques. We adapted the Undirected Inductive Coding method to analyze samples of user questions and arrive at a comprehensive typology of the user intent. In our analysis we focused on two types of intent, social vs. non-social, and define measures of social engagement to characterize the users' participation and content contributions. Our approach is applicable to a broad class of online communities and can be used to monitor the dynamics of community ecosystems.
AB - Knowledge sharing communities, such as Wikipedia or Yahoo! Answers, add greatly to the wealth of information available on the Web. They represent complex social ecosystems that rely on user paricipation and the quality of users' contributions to prosper. However, quality is harder to achieve when knowledge sharing is facilitated through a high degree of personal interactions. The individuals' objectives may change from knowledge sharing to socializing, with a profound impact on the community and the value it delivers to the broader population of Web users. In this paper we provide new insights into the types of content that is shared through Community Question Answering (CQA) services. We demonstrate an approach that combines in-depth content analysis with social network analysis techniques. We adapted the Undirected Inductive Coding method to analyze samples of user questions and arrive at a comprehensive typology of the user intent. In our analysis we focused on two types of intent, social vs. non-social, and define measures of social engagement to characterize the users' participation and content contributions. Our approach is applicable to a broad class of online communities and can be used to monitor the dynamics of community ecosystems.
KW - Q&A community
KW - Question typology
KW - Social scores
KW - User intent
UR - http://www.scopus.com/inward/record.url?scp=74549172546&partnerID=8YFLogxK
U2 - 10.1145/1645953.1646096
DO - 10.1145/1645953.1646096
M3 - Conference contribution
AN - SCOPUS:74549172546
SN - 9781605585123
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1127
EP - 1136
BT - ACM 18th International Conference on Information and Knowledge Management, CIKM 2009
T2 - ACM 18th International Conference on Information and Knowledge Management, CIKM 2009
Y2 - 2 November 2009 through 6 November 2009
ER -