TY - JOUR
T1 - Stabilized silicene within bilayer graphene
T2 - A proposal based on molecular dynamics and density-functional tight-binding calculations
AU - Berdiyorov, G. R.
AU - Neek-Amal, M.
AU - Peeters, F. M.
AU - Van Duin, Adri C.T.
PY - 2014/1/22
Y1 - 2014/1/22
N2 - Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
AB - Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
UR - http://www.scopus.com/inward/record.url?scp=84892947226&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.89.024107
DO - 10.1103/PhysRevB.89.024107
M3 - Article
AN - SCOPUS:84892947226
SN - 1098-0121
VL - 89
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 2
M1 - 024107
ER -