Structural basis for the role of C-terminus acidic tail of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in E3 ligase (Bre1) mediated recognition of histones

Pawan Yadav, Manish Gupta, Rushna Wazahat, Zeyaul Islam, Susan E Tsutakawa, Mohan Kamthan, Pankaj Kumar

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Ubiquitination of histone H2B on chromatin is key to gene regulation. E3 ligase Bre1 and E2 Rad6 in Saccharomyces cerevisiae associate together to catalyze mono-ubiquitination at histone H2BK123. Prior studies identified the role of a highly dynamic C-terminal acidic tail of Rad6 indispensable for H2BK123 mono-ubiquitination. However, the mechanistic basis for the Rad6-acidic tail role remained elusive. Using different structural and biophysical approaches, this study for the first time uncovers the direct role of Rad6-acidic tail in interaction with the Bre1 Rad6-Binding Domain (RBD) and recognition of histones surface to facilitate histone H2B mono-ubiquitination. A combination of NMR, SAXS, ITC, site-directed mutagenesis and molecular dynamics studies reveal that RBD domain of Bre1 interacts with Rad6 to stabilize the dynamics of acidic tail. This Bre1-RBD mediated stability in acidic tail of Rad6 could be one of the key factors for facilitating correct recognition of histone surface and ubiquitin-transfer at H2BK123. We provide biophysical evidence that Rad6-acidic tail and a positivity charged surface on histone H2B are involved in recognition of E2:Histones. Taken together, this study uncovers the mechanistic basis for the role of Rad6-acidic in Bre1-RBD mediated recognition of histone surface that ensure the histone H2B mono-ubiquitination.

Original languageEnglish
Article number127717
Pages (from-to)127717
JournalInternational Journal of Biological Macromolecules
Volume254
Issue numberPt 2
DOIs
Publication statusPublished - Jan 2024

Keywords

  • Acidic tail
  • Bre1
  • Histones
  • Mono-ubiquitination
  • Rad6

Fingerprint

Dive into the research topics of 'Structural basis for the role of C-terminus acidic tail of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in E3 ligase (Bre1) mediated recognition of histones'. Together they form a unique fingerprint.

Cite this