TY - JOUR
T1 - Sustainability performance of space-cooling technologies and approaches
AU - Abedrabboh, Omer
AU - Koç, Muammer
AU - Biçer, Yusuf
N1 - Publisher Copyright:
© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2022
Y1 - 2022
N2 - Global warming causes an increase in the average ambient temperatures worldwide, resulting in a further increase in the cooling load demand of indoor spaces such as buildings and agricultural greenhouses; both are critically important for humans and other living creatures. While fulfilling the cooling needs of such, there has also been a crucial constraint to reducing the energy consumption and carbon emissions associated with cooling systems. Alternative cooling approaches are being developed in hopes of replacing conventional refrigeration systems. This study first presents findings of a comprehensive comparative literature review and analysis of various active cooling cycles in three main categories: Vapor-compression cycles (vapor-compression with different hydrofluorocarbon, hydrochlorofluorocarbon, and eco-friendly refrigerants), thermally-driven cycles (absorption, adsorption, and ejector), and emerging cycles (elastocaloric, electrocaloric, magnetocaloric, thermoacoustic, thermoelectric, and thermotunneling). Then, it presents investigations on the development of a sustainability performance index to comprehensively compare different cooling approaches. The sustainability performance is derived from several parameters obtained from the environmental, economic, and energy impact of cooling. Vapor-compression cycles joined with two emerging technologies (i.e. electrocaloric and magnetocaloric) achieved high sustainability scores, where vapor-compression-R510A obtained the highest sustainability score of 76.77%, followed by electrocaloric and vapor-compression-RE170, scoring 75% and 73.3%, respectively.
AB - Global warming causes an increase in the average ambient temperatures worldwide, resulting in a further increase in the cooling load demand of indoor spaces such as buildings and agricultural greenhouses; both are critically important for humans and other living creatures. While fulfilling the cooling needs of such, there has also been a crucial constraint to reducing the energy consumption and carbon emissions associated with cooling systems. Alternative cooling approaches are being developed in hopes of replacing conventional refrigeration systems. This study first presents findings of a comprehensive comparative literature review and analysis of various active cooling cycles in three main categories: Vapor-compression cycles (vapor-compression with different hydrofluorocarbon, hydrochlorofluorocarbon, and eco-friendly refrigerants), thermally-driven cycles (absorption, adsorption, and ejector), and emerging cycles (elastocaloric, electrocaloric, magnetocaloric, thermoacoustic, thermoelectric, and thermotunneling). Then, it presents investigations on the development of a sustainability performance index to comprehensively compare different cooling approaches. The sustainability performance is derived from several parameters obtained from the environmental, economic, and energy impact of cooling. Vapor-compression cycles joined with two emerging technologies (i.e. electrocaloric and magnetocaloric) achieved high sustainability scores, where vapor-compression-R510A obtained the highest sustainability score of 76.77%, followed by electrocaloric and vapor-compression-RE170, scoring 75% and 73.3%, respectively.
KW - Air conditioning
KW - alternative cooling
KW - eco-friendly refrigerants
KW - efficiency
KW - sustainability
UR - http://www.scopus.com/inward/record.url?scp=85139389664&partnerID=8YFLogxK
U2 - 10.1080/15567036.2022.2127979
DO - 10.1080/15567036.2022.2127979
M3 - Review article
AN - SCOPUS:85139389664
SN - 1556-7036
VL - 44
SP - 9017
EP - 9042
JO - Energy Sources, Part A: Recovery, Utilization and Environmental Effects
JF - Energy Sources, Part A: Recovery, Utilization and Environmental Effects
IS - 4
ER -