TY - JOUR
T1 - Synergistic corrosion effects of magnetite and microorganisms
T2 - microbial community dependency
AU - Diaz-Mateus, Maria A.
AU - Machuca, Laura L.
AU - Farhat, Hanan
AU - Salgar-Chaparro, Silvia J.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Abstract: The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. Key points: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.
AB - Abstract: The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. Key points: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.
KW - Acid-producing bacteria
KW - Carbon steel
KW - Deposits
KW - Magnetite
KW - Microbiologically influenced corrosion
KW - pH
UR - http://www.scopus.com/inward/record.url?scp=85186756476&partnerID=8YFLogxK
U2 - 10.1007/s00253-024-13086-6
DO - 10.1007/s00253-024-13086-6
M3 - Article
C2 - 38441693
AN - SCOPUS:85186756476
SN - 0175-7598
VL - 108
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 1
M1 - 253
ER -