Abstract
Simultaneous removal of heavy metals coupled with high adsorption capacity of an adsorbent material is an ultimate target in industry for the purification of wastewater. A novel adsorbent prepared from an electronic waste-based material has been used for this purpose. The results exhibit very high removal capacities of the adsorbent for both cobalt and nickel in the single-component systems. These capacities have been compared with those of three widely-used industrial adsorbents and it has been shown that the removal capability of this novel material is well above those of the industrial ones. Moreover, the effect of pH has also been explored and it has been shown that the pH value has a drastic effect on the metal removal capacity at pH values lower than 3. Furthermore, a synergistic effect of two metals has been observed and studied in the binary metal system. The results indicate that not only the simultaneous presence of the two metals does not reduce the adsorption capacity, but also enhances their removal from the effluent. Moreover, the adsorption equilibrium modeling for the single and binary systems have been presented and it has been inferred that the Langmuir-type models can fit the single component experimental data, while the binary system can be fitted only by the modified extended Freundlich model.
Original language | English |
---|---|
Pages (from-to) | 140-146 |
Number of pages | 7 |
Journal | Chemical Engineering Journal |
Volume | 228 |
DOIs | |
Publication status | Published - 5 Jul 2013 |
Externally published | Yes |
Keywords
- Cobalt
- E-waste
- Heavy metal removal
- Nickel
- Simultaneous adsorption
- Synergistic effect