Abstract
Li0.5Ni0.25TiOPO4/C composite was synthesized by the co-precipitation method using polyethylene glycol as carbon source. X-ray diffraction study showed that the as-prepared material crystallizes in the monoclinic system (S.G. P21/c). This 3D structure exhibits an open framework favourable to intercalation reactions. The morphology and the microstructure characterisation was performed by scanning electron microscopy (SEM). Small particles (∼1 μm) coated by carbon were observed. Raman study confirms the presence of carbon graphite in the Li0.5Ni0.25TiOPO4/C composite. Cyclic voltammetry (CV) and charge-discharge galvanostatic cycling were used to characterize its electrochemical properties. The Li0.5Ni0.25TiOPO4/C composite exhibits excellent electrochemical performances with good capacity retention for 50 cycles. Approximately 200 mAh/g could be reached at C, C/2, C/5 and C/20 rates in the 0.5-3 V potential range. These results clearly evidenced the positive effect of the carbon coating on the electrochemical properties of the studied phosphate.
Original language | English |
---|---|
Pages (from-to) | 5531-5536 |
Number of pages | 6 |
Journal | Electrochimica Acta |
Volume | 54 |
Issue number | 23 |
DOIs | |
Publication status | Published - 30 Sept 2009 |
Externally published | Yes |
Keywords
- Carbon coating
- Lithium ion batteries
- Lithium nickel oxyphosphate
- Raman spectroscopy