TY - GEN
T1 - Synthesis and characterization of Graphene/Zinc Oxide Nanocomposites
AU - Sezer, Nurettin
AU - Ali, Adnan
AU - Atieh, Muataz A.
AU - Koc, Muammer
N1 - Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - This study investigates the synthesis and characterization of graphene/zinc oxide nanocomposites. Wet impregnation method was employed for the synthesis. Firstly, graphene nanoplatelets and zinc nitrate hexahydrate were concurrently dispersed in ethanol and subjected to sonication for 1 h. Then, the dispersion was put in a furnace at 70 .C overnight. The paste was then collected and heated further up to 400 .C in air for a duration of 4 h. The process was proceeded to yield insoluble nanocomposites. The synthesis was followed by characterization of the nanocomposite samples by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The XRD pattern revealed the presence of ZnO crystals and graphene. The FESEM images showed that ZnO crystals with average particle size of 30 nm are uniformly distributed on graphene surfaces. According to the TGA result, the content of nanocomposites is in good agreement with the materials used during synthesis.
AB - This study investigates the synthesis and characterization of graphene/zinc oxide nanocomposites. Wet impregnation method was employed for the synthesis. Firstly, graphene nanoplatelets and zinc nitrate hexahydrate were concurrently dispersed in ethanol and subjected to sonication for 1 h. Then, the dispersion was put in a furnace at 70 .C overnight. The paste was then collected and heated further up to 400 .C in air for a duration of 4 h. The process was proceeded to yield insoluble nanocomposites. The synthesis was followed by characterization of the nanocomposite samples by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The XRD pattern revealed the presence of ZnO crystals and graphene. The FESEM images showed that ZnO crystals with average particle size of 30 nm are uniformly distributed on graphene surfaces. According to the TGA result, the content of nanocomposites is in good agreement with the materials used during synthesis.
UR - http://www.scopus.com/inward/record.url?scp=85040987000&partnerID=8YFLogxK
U2 - 10.1115/IMECE2017-70291
DO - 10.1115/IMECE2017-70291
M3 - Conference contribution
AN - SCOPUS:85040987000
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Heat Transfer and Thermal Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -