TY - GEN
T1 - The Role of Context in Detecting Previously Fact-Checked Claims
AU - Shaar, Shaden
AU - Alam, Firoj
AU - Da San Martino, Giovanni
AU - Nakov, Preslav
N1 - Publisher Copyright:
© Findings of the Association for Computational Linguistics: NAACL 2022 - Findings.
PY - 2022
Y1 - 2022
N2 - Recent years have seen the proliferation of disinformation and fake news online. Traditional approaches to mitigate these issues is to use manual or automatic fact-checking. Recently, another approach has emerged: checking whether the input claim has previously been fact-checked, which can be done automatically, and thus fast, while also offering credibility and explainability, thanks to the human factchecking and explanations in the associated fact-checking article. Here, we focus on claims made in a political debate and we study the impact of modeling the context of the claim: both on the source side, i.e., in the debate, as well as on the target side, i.e., in the fact-checking explanation document. We do this by modeling the local context, the global context, as well as by means of co-reference resolution, and multihop reasoning over the sentences of the document describing the fact-checked claim. The experimental results show that each of these represents a valuable information source, but that modeling the source-side context is most important, and can yield 10+ points of absolute improvement over a state-of-the-art model.
AB - Recent years have seen the proliferation of disinformation and fake news online. Traditional approaches to mitigate these issues is to use manual or automatic fact-checking. Recently, another approach has emerged: checking whether the input claim has previously been fact-checked, which can be done automatically, and thus fast, while also offering credibility and explainability, thanks to the human factchecking and explanations in the associated fact-checking article. Here, we focus on claims made in a political debate and we study the impact of modeling the context of the claim: both on the source side, i.e., in the debate, as well as on the target side, i.e., in the fact-checking explanation document. We do this by modeling the local context, the global context, as well as by means of co-reference resolution, and multihop reasoning over the sentences of the document describing the fact-checked claim. The experimental results show that each of these represents a valuable information source, but that modeling the source-side context is most important, and can yield 10+ points of absolute improvement over a state-of-the-art model.
UR - http://www.scopus.com/inward/record.url?scp=85130477158&partnerID=8YFLogxK
U2 - 10.18653/v1/2022.findings-naacl.122
DO - 10.18653/v1/2022.findings-naacl.122
M3 - Conference contribution
AN - SCOPUS:85130477158
T3 - Findings of the Association for Computational Linguistics: NAACL 2022 - Findings
SP - 1619
EP - 1631
BT - Findings of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2022 Findings of the Association for Computational Linguistics: NAACL 2022
Y2 - 10 July 2022 through 15 July 2022
ER -