TY - JOUR
T1 - The role of machine learning in diagnosing bipolar disorder
T2 - Scoping review
AU - Jan, Zainab
AU - AI-Ansari, Noor
AU - Mousa, Osama
AU - Abd-Alrazaq, Alaa
AU - Ahmed, Arfan
AU - Alam, Tanvir
AU - Househ, Mowafa
N1 - Publisher Copyright:
© Zainab Jan, Noor AI-Ansari, Osama Mousa, Alaa Abd-alrazaq, Arfan Ahmed, Tanvir Alam, Mowafa Househ. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 18.11.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
PY - 2021/11
Y1 - 2021/11
N2 - Background: Bipolar disorder (BD) is the 10th most common cause of frailty in young individuals and has triggered morbidity and mortality worldwide. Patients with BD have a life expectancy 9 to 17 years lower than that of normal people. BD is a predominant mental disorder, but it can be misdiagnosed as depressive disorder, which leads to difficulties in treating affected patients. Approximately 60% of patients with BD are treated for depression. However, machine learning provides advanced skills and techniques for better diagnosis of BD. Objective: This review aims to explore the machine learning algorithms used for the detection and diagnosis of bipolar disorder and its subtypes. Methods: The study protocol adopted the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. We explored 3 databases, namely Google Scholar, ScienceDirect, and PubMed. To enhance the search, we performed backward screening of all the references of the included studies. Based on the predefined selection criteria, 2 levels of screening were performed: title and abstract review, and full review of the articles that met the inclusion criteria. Data extraction was performed independently by all investigators. To synthesize the extracted data, a narrative synthesis approach was followed. Results: We retrieved 573 potential articles were from the 3 databases. After preprocessing and screening, only 33 articles that met our inclusion criteria were identified. The most commonly used data belonged to the clinical category (19, 58%). We identified different machine learning models used in the selected studies, including classification models (18, 55%), regression models (5, 16%), model-based clustering methods (2, 6%), natural language processing (1, 3%), clustering algorithms (1, 3%), and deep learning-based models (3, 9%). Magnetic resonance imaging data were most commonly used for classifying bipolar patients compared to other groups (11, 34%), whereas microarray expression data sets and genomic data were the least commonly used. The maximum ratio of accuracy was 98%, whereas the minimum accuracy range was 64%. Conclusions: This scoping review provides an overview of recent studies based on machine learning models used to diagnose patients with BD regardless of their demographics or if they were compared to patients with psychiatric diagnoses. Further research can be conducted to provide clinical decision support in the health industry.
AB - Background: Bipolar disorder (BD) is the 10th most common cause of frailty in young individuals and has triggered morbidity and mortality worldwide. Patients with BD have a life expectancy 9 to 17 years lower than that of normal people. BD is a predominant mental disorder, but it can be misdiagnosed as depressive disorder, which leads to difficulties in treating affected patients. Approximately 60% of patients with BD are treated for depression. However, machine learning provides advanced skills and techniques for better diagnosis of BD. Objective: This review aims to explore the machine learning algorithms used for the detection and diagnosis of bipolar disorder and its subtypes. Methods: The study protocol adopted the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. We explored 3 databases, namely Google Scholar, ScienceDirect, and PubMed. To enhance the search, we performed backward screening of all the references of the included studies. Based on the predefined selection criteria, 2 levels of screening were performed: title and abstract review, and full review of the articles that met the inclusion criteria. Data extraction was performed independently by all investigators. To synthesize the extracted data, a narrative synthesis approach was followed. Results: We retrieved 573 potential articles were from the 3 databases. After preprocessing and screening, only 33 articles that met our inclusion criteria were identified. The most commonly used data belonged to the clinical category (19, 58%). We identified different machine learning models used in the selected studies, including classification models (18, 55%), regression models (5, 16%), model-based clustering methods (2, 6%), natural language processing (1, 3%), clustering algorithms (1, 3%), and deep learning-based models (3, 9%). Magnetic resonance imaging data were most commonly used for classifying bipolar patients compared to other groups (11, 34%), whereas microarray expression data sets and genomic data were the least commonly used. The maximum ratio of accuracy was 98%, whereas the minimum accuracy range was 64%. Conclusions: This scoping review provides an overview of recent studies based on machine learning models used to diagnose patients with BD regardless of their demographics or if they were compared to patients with psychiatric diagnoses. Further research can be conducted to provide clinical decision support in the health industry.
KW - Bipolar disorder
KW - Clinical data
KW - Diagnosis
KW - Machine learning
KW - Mental health
KW - Scoping review
KW - Support vector machine
UR - http://www.scopus.com/inward/record.url?scp=85120432815&partnerID=8YFLogxK
U2 - 10.2196/29749
DO - 10.2196/29749
M3 - Review article
C2 - 34806996
AN - SCOPUS:85120432815
SN - 1439-4456
VL - 23
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 11
M1 - e29749
ER -