Abstract
The topochemical conversion of a dense, insulating metal-organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(i) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10-11 S cm-1 at 20 °C to 7.6 × 10-9 S cm-1 at 140°C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations.
Original language | English |
---|---|
Pages (from-to) | 1465-1473 |
Number of pages | 9 |
Journal | Chemical Science |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2015 |
Externally published | Yes |